Expressoes Aritméticas, Logicas e Relacionais

11 o T 11 e T 20 OSSO 1
EXPress0es AritmMEtiCas. .......cccii i s m e mmmemmemneemneeneeenreenrennreenenneeneennennnnnnnnnnnees 1
EXpressoes RelaCioNais........ccuuiiiiiiiiiiiiiiiiiissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnssmmmsmmmssnnsnnnsnnnsnnnnnnnn 2
[ o =TT o= -3 1o o | o= =SS 3
(0207 ¢ 10T g F= o= Lo T o (=0 S Tq o] (== T=T 1= 4

Precedéncia entre Diferentes Tipos de OpPEradores............uuuiiiieiiiiiiiiiiiiee e e e e e e e s ennereeeeaeeeas 4
Expressoes em Diferentes Linguagens de Programacgao.........ccccccuiiiiimmmmmssiinnsisssssnsssssssssssssss s s s sssssssssses 4
Boas Praticas NO USO de EXPreSSOES.......ccccerrrusuummsmmnnmmnnmnnnmmnmmmmmenmnnnnennnsssssssssssssssssssssssssssssssnssssennseneeeneseneeees 5
L0 o T 0 T 11 T3 T 5
L] =T =T 0T T 5
Anexo - Resumo Estruturado/Mapa Mental Gerado por lA............i e 7
Introducao

As expressdes aritméticas, légicas e relacionais sdo elementos fundamentais na programacgédo de
computadores, permitindo a manipulagado de dados e a tomada de decisbes em algoritmos. Estas expressdes
sdo construidas a partir de operadores que relacionam valores para produzir novos resultados. Compreender
como funcionam esses operadores € como construir expressoes validas é essencial para o desenvolvimento
de programas eficientes e corretos. Este material explora os principais tipos de expressdes utilizadas em
programacao, seus operadores, regras de precedéncia e aplicagbes praticas.

Expressdes Aritméticas

As expressobes aritméticas sao utilizadas para realizar calculos matematicos em programas de computador.
Elas sdo compostas por operandos (valores numéricos ou variaveis) e operadores aritméticos que definem as
operagdes a serem realizadas.
Os principais operadores aritméticos sao:
e Adigao (+): Soma dois valores.
Exemplo:5+3=8
e Subtracdo (-): Subtrai o segundo valor do primeiro.
Exemplo: 10-4=6
e Multiplicagdo (*): Multiplica dois valores.
Exemplo: 3*4 =12
e Divisao (/): Divide o primeiro valor pelo segundo.
Exemplo: 20/5=4
e Modulo (%): Retorna o resto da diviséo inteira do primeiro valor pelo segundo.
Exemplo: 14 % 3 = 2 (pois 14 dividido por 3 é 4 com resto 2)



e Potenciagdo (** ou *): Eleva o primeiro valor a poténcia do segundo.
Exemplo: 2 » 3 = 8 (2 elevado a terceira poténcia)
Além destes, existem operadores aritméticos unarios, que operam sobre um unico valor:
e Negacéo (-): Inverte o sinal de um numero.
Exemplo: -5 (negativo de 5)
e Incremento (++): Aumenta o valor de uma variavel em 1.
Exemplo: x++ (equivale a x = x + 1)
e Decremento (--): Diminui o valor de uma variavel em 1.
Exemplo: x-- (equivale ax =x - 1)
Na avaliacdo de expressodes aritméticas complexas, € importante considerar a precedéncia dos operadores. A
ordem padrao de avaliagao é:
Parénteses (expressodes entre parénteses sao avaliadas primeiro)
Potenciacao
e Multiplicagao, divisao e modulo (da esquerda para a direita)
e Adicdo e subtracio (da esquerda para a direita)
Por exemplo, na expresséo 2 + 3 * 4, a multiplicagao tem precedéncia sobre a adicado, entdo o resultado é 14
(e ndo 20, que seria o resultado se a adicao fosse realizada primeiro).
Para alterar a ordem de avaliagdo, podem ser utilizados parénteses. Na expressao (2 + 3) * 4, os parénteses
indicam que a adi¢do deve ser realizada primeiro, resultando em 20.

Expressdes Relacionais

As expressdes relacionais sao utilizadas para comparar valores e determinar a relagao entre eles. O resultado
de uma expressao relacional € sempre um valor légico (verdadeiro ou falso).
Os principais operadores relacionais sao:
e Igual a (==): Verifica se dois valores sdo iguais.
Exemplo: 5 == 5 (verdadeiro)
e Diferente de (= ou <>): Verifica se dois valores s&o diferentes.
Exemplo: 5 |= 3 (verdadeiro)
e Maior que (>): Verifica se o primeiro valor € maior que o segundo.
Exemplo: 7 > 4 (verdadeiro)
e Menor que (<): Verifica se o primeiro valor € menor que o segundo.
Exemplo: 2 < 6 (verdadeiro)
e Maior ou igual a (>=): Verifica se o primeiro valor € maior ou igual ao segundo.
Exemplo: 8 >= 8 (verdadeiro)
e Menor ou igual a (<=): Verifica se o primeiro valor € menor ou igual ao segundo.
Exemplo: 3 <= 5 (verdadeiro)
As expressodes relacionais sdo frequentemente utilizadas em estruturas de controle condicional, como if-else,
para determinar o fluxo de execugédo de um programa.
E importante notar que, em muitas linguagens de programacéo, o operador de igualdade (==) é diferente do
operador de atribuicdo (=). O primeiro compara valores, enquanto o segundo atribui um valor a uma variavel.



Expressdes Logicas

As expressoes logicas sdo utilizadas para combinar ou modificar valores légicos (verdadeiro ou falso). Elas
sdo fundamentais para a implementacao de légica condicional em programas.
Os principais operadores légicos sao:
e E logico (AND, &&, E): Retorna verdadeiro apenas se ambos os operandos forem verdadeiros.
Tabela-verdade:
- Verdadeiro AND Verdadeiro = Verdadeiro
- Verdadeiro AND Falso = Falso
- Falso AND Verdadeiro = Falso
- Falso AND Falso = Falso
e QU logico (OR, ||, OU): Retorna verdadeiro se pelo menos um dos operandos for verdadeiro.
Tabela-verdade:
- Verdadeiro OR Verdadeiro = Verdadeiro
- Verdadeiro OR Falso = Verdadeiro
- Falso OR Verdadeiro = Verdadeiro
- Falso OR Falso = Falso
e NAO légico (NOT, !, NAO): Inverte o valor légico do operando.
Tabela-verdade:
- NOT Verdadeiro = Falso
- NOT Falso = Verdadeiro
Além destes, existem operadores légicos menos comuns, mas que podem ser encontrados em algumas
linguagens ou contextos especificos:
e QU exclusivo (XOR, *): Retorna verdadeiro se exatamente um dos operandos for verdadeiro.
Tabela-verdade:
- Verdadeiro XOR Verdadeiro = Falso
- Verdadeiro XOR Falso = Verdadeiro
- Falso XOR Verdadeiro = Verdadeiro
- Falso XOR Falso = Falso
e NAO-E (NAND): Retorna falso apenas se ambos os operandos forem verdadeiros.
Tabela-verdade:
- Verdadeiro NAND Verdadeiro = Falso
- Verdadeiro NAND Falso = Verdadeiro
- Falso NAND Verdadeiro = Verdadeiro
- Falso NAND Falso = Verdadeiro
e NAO-OU (NOR): Retorna verdadeiro apenas se ambos os operandos forem falsos.
Tabela-verdade:
- Verdadeiro NOR Verdadeiro = Falso
- Verdadeiro NOR Falso = Falso
- Falso NOR Verdadeiro = Falso
- Falso NOR Falso = Verdadeiro
Na avaliagdo de expressdes logicas complexas, também ¢é importante considerar a precedéncia dos
operadores. A ordem padrao de avaliagdao é: 1. NOT (maior precedéncia), 2. AND, 3. OR (menor
precedéncia)



Por exemplo, na expressdo A OR B AND C, o operador AND tem precedéncia sobre o operador OR, entéo a
expressao é avaliada como A OR (B AND C).

Combinacao de Expressoes

Em programacgao, € comum combinar diferentes tipos de expressbes para criar condicdes mais complexas.
Por exemplo, podemos combinar expressdes aritméticas e relacionais para verificar se o resultado de um
calculo atende a determinada condigdo:

(x+y)>10

Esta expressao primeiro calcula a soma de x e y (expressao aritmética) e depois verifica se o resultado é
maior que 10 (expressao relacional).
Também podemos combinar expressdes relacionais e légicas para criar condigdes compostas:

(idade >= 18) AND (temCarteira == verdadeiro)

Esta expressao verifica se a idade é maior ou igual a 18 E se a pessoa tem carteira de motorista.
Ao combinar diferentes tipos de expressdes, € importante considerar a precedéncia dos operadores e utilizar
parénteses quando necessario para garantir que as operagdes sejam realizadas na ordem desejada.

Precedéncia entre Diferentes Tipos de Operadores

Quando uma expressao contém diferentes tipos de operadores, a ordem de avaliagdo segue uma hierarquia
de precedéncia:
1. Operadores aritméticos (maior precedéncia)
2. Operadores relacionais
3. Operadores logicos (menor precedéncia)
Por exemplo, na expressdo A + B > C AND D == E, a ordem de avaliagao seria:
1. Calcular A + B (operador aritmético)
2. Verificar se (A + B) > C (operador relacional)
3. Verificar se D == E (operador relacional)
4. Combinar os resultados das comparagdes com AND (operador légico)

Expressdes em Diferentes Linguagens de Programacao

Embora os conceitos fundamentais de expressoes aritméticas, légicas e relacionais sejam semelhantes em
todas as linguagens de programagao, a sintaxe especifica pode variar. Alguns exemplos:

C/C++ Python Java JavaScript

intresultado=(a+b)*c; |resultado=(a+b)*c int resultado = (a + b) * ¢; | let resultado = (a + b) * c;
if(x>0&&y<10){ ifx>0andy<10: if(x>0&&y<10){ if (x>0&&y<10){




/[ codigo a ser
executado

}

# cbodigo a ser
executado

/[ codigo a ser
executado

}

/l cédigo a ser
executado

}

Boas Praticas no Uso de Expressoes

Para garantir a clareza e a correcdo de expressdes em programas, algumas boas praticas devem ser
seguidas:

Utilize parénteses para tornar explicita a ordem de avaliagdo, mesmo quando nao sao estritamente
necessarios.

Exemplo: (a+b)*cemvezdea+b*c
Evite expressdes muito complexas. Se uma expressao se tornar dificil de entender, divida-a em partes
menores e utilize variaveis intermediarias.
Tenha cuidado com comparagbes de igualdade em valores de ponto flutuante, pois erros de
arredondamento podem levar a resultados inesperados.

e Esteja atento a possiveis divisdes por zero em expressodes aritméticas.
e \Verifique se os tipos de dados dos operandos sdo compativeis com os operadores utilizados.
e Utilize nomes de variaveis significativos para tornar as expressdes mais legiveis.
e Documente expressbes complexas com comentarios explicativos.
Conclusao

As expressdes aritméticas, logicas e relacionais sdo componentes fundamentais da programacao, permitindo
a manipulacdo de dados e a implementagdo de logica condicional em algoritmos. Compreender como
funcionam os diferentes tipos de operadores, suas regras de precedéncia e como combina-los para criar
expressdes complexas é essencial para o desenvolvimento de programas eficientes e corretos.

Neste material, exploramos os principais tipos de expressdes utilizadas em programacéao, seus operadores e
regras de avaliagdo. Também discutimos como combinar diferentes tipos de expressdes e apresentamos boas
praticas para garantir a clareza e a corregdo de expressoes em programas.

O dominio desses conceitos é fundamental para avancar no estudo de estruturas de controle, como
condicionais e loops, que utilizam expressodes para determinar o fluxo de execugdo de um programa.

Referéncias

|| Livros e Apostilas
o CORMEN, T. H. Introduction to Algorithms. MIT Press.
o GOODRICH, M. Data Structures and Algorithms in Python.
o Tenenbaum, A. M. Estruturas de Dados e Algoritmos em C
o P. Fedfiloff. Algoritmos em Linguagem C. Campus-Elsevier, 1a. edigéo, 2009 H. M. Deitel, P. J.
Deitel. C - Como Programar, 6a. edigdo, Pearson Education, 2011.



o

o

o

B. W. Kernighan, D. M. Ritchie. The C Programming Language, 2a. edi¢cdo, Prentice-Hall, 1988
[Tradugao: C - A Linguagem de Programacéo. Editora Campus, 1989].

J. L. Szwarcfiter, L. Markenzon. Estruturas de Dados e seus Algoritmos, 3a. edi¢cao, Editora
LTC, 2010.

W. Celes, R. Cerqueira, J.L. Rangel. Introdugcao a Estruturas de Dados, 1a. edicido, Editora
Campus, 2004.

N. Ziviani. Projeto de Algoritmos com Implementacbes em Pascal e C, 3a. edicdo, Editora
Cengage Learning, 2011.

T. Cormen, C. Leiserson, R. Rivest, C. Stein. Algoritmos - Teoria e Pratica, 3a. edi¢cao, Editora
Campus, 2012.

R. Sedgewick, K. Wayne. Algorithms, 4a. edigdo, Addison -Wesley, 2011.

A. Kelley, |. Pohl. A Book on C, 4a. edicao, Addison Wesley, 1998.

e & Recursos Online

o

©)
O

Expressdes aritméticas, relacionais e l6gicas - SlideShare -
https://pt.slideshare.net/slideshow/expresses-aritmticas-relacionais-e-lgicas-245557385/245557
385

Expressbes aritméticas, relacionais e l6gicas - IME-USP -
https://panda.ime.usp.br/cc110/static/cc110/02-expressoes.html

Operacgoes relacionais e I6gicas - Embarcados -
Operadores e Expressoes - IBM -

NUPS://WWW.IK ) 01 ¢ 1 ] [ [ [
Operadores - Minicurso de Logica de Programacgéo -
https://mclp.dicasdeprogramacao.com.br/licao-4-operadores/

GeeksforGeeks - Operators in C/C++

W3Schools - JavaScript Operators

&% Videos e Cursos
Curso em Video - Operadores Aritméticos, Relacionais e Légicos

Algoritmos e Programacdo de Computadores | - Expressdoes logicas e operadores

https://www.youtube.com/watch?v=qRXno770Mfs

e Khan Academy - Introdug¢do a Programacgéao

Isencéo de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do conteddo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagéo dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteudo aqui apresentado.


https://pt.slideshare.net/slideshow/expresses-aritmticas-relacionais-e-lgicas-245557385/245557385
https://pt.slideshare.net/slideshow/expresses-aritmticas-relacionais-e-lgicas-245557385/245557385
https://panda.ime.usp.br/cc110/static/cc110/02-expressoes.html
https://embarcados.com.br/operacoes-relacionais-e-logicas/
https://www.ibm.com/docs/pt-br/tcamfma/6.3.0?topic=tesl-operators-expressions
https://mclp.dicasdeprogramacao.com.br/licao-4-operadores/
https://www.youtube.com/watch?v=qRXno770Mfs

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. Introdugéo

e Base da programagido — manipulagcédo de dados e decisdes em algoritmos.
e Construidas com operandos (valores/variaveis) e operadores.
e Importancia: programas corretos e eficientes.

2. Expressoes Aritméticas

Usadas para calculos matematicos.
Operadores basicos:

1. + adigao

2. - subtracao

3. * multiplicacéo
4. /divisao

5. % maodulo (resto)

6. " ou ** potenciacéo
Operadores unarios: - (negacao), ++ incremento, -- decremento.
Precedéncia:

1. Parénteses

2. Potenciacao

3. Multiplicagao / Divisdo / Médulo

4. Adigao / Subtracao

3. Expressdes Relacionais

Comparam valores — resultado sempre légico (V/F).
Operadores:

== igual

I= ou <> diferente

> maior que

< menor que

>= maior ou igual

<= menor ou igual

Uso: estruturas de decisao (if, while, etc).

Atencado: == (comparacgao) # = (atribui¢ao).

[ ]
o O O O O ©O

4. Expressodes Logicas



Combinam valores légicos.

Operadores principais:
1. AND (&&, and) — verdadeiro se ambos verdadeiros.
2. OR (]|, or) — verdadeiro se pelo menos um verdadeiro.
3. NOT (!, not) — inverte valor légico.

Operadores adicionais: XOR, NAND, NOR.

Precedéncia logica:

1. NOT
2. AND
3. OR

5. Combinagao de Expressoes

e Exemplo: (x +y)> 10 — aritmética + relacional.
e Exemplo: (idade >= 18) AND (temCarteira == true) — relacional + ldgico.
e Uso de parénteses evita ambiguidades.

6. Precedéncia Geral

1. Aritméticos
2. Relacionais
3. Logicos

Exemplo: A+ B> CAND D ==

7. Expressodes em Diferentes Linguagens

e Conceito igual, mas sintaxe varia.

e Ex.:
o ClJavaldS — if (x>0 &&y < 10)
o Python —ifx>0andy<10

8. Boas Praticas

Use parénteses para clareza.

Evite expressdes muito complexas — divida em partes.
Cuidado com comparacgoes de ponto flutuante.

Evite divisdo por zero.



e Garanta compatibilidade de tipos.
e Nomes de variaveis significativos.
e Documente expressdes complexas.

9. Concluséao

e Essenciais para logica condicional e calculos.
e Fundamentam estruturas de controle (condig¢des, lacos).
e Dominio necessario para construir algoritmos corretos e claros.



	Expressões Aritméticas, Lógicas e Relacionais 
	Introdução 
	Expressões Aritméticas 
	Expressões Relacionais 
	Expressões Lógicas 
	Combinação de Expressões 
	Precedência entre Diferentes Tipos de Operadores 

	Expressões em Diferentes Linguagens de Programação 
	Boas Práticas no Uso de Expressões 
	Conclusão 
	Referências 
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA 

