Expressoes Aritméticas, Logicas e Relacionais
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Introducao

As expressdes aritméticas, légicas e relacionais sdo elementos fundamentais na programacgédo de
computadores, permitindo a manipulagado de dados e a tomada de decisbes em algoritmos. Estas expressdes
sdo construidas a partir de operadores que relacionam valores para produzir novos resultados. Compreender
como funcionam esses operadores € como construir expressoes validas é essencial para o desenvolvimento
de programas eficientes e corretos. Este material explora os principais tipos de expressdes utilizadas em
programacao, seus operadores, regras de precedéncia e aplicagbes praticas.

Expressdes Aritméticas

As expressobes aritméticas sao utilizadas para realizar calculos matematicos em programas de computador.
Elas sdo compostas por operandos (valores numéricos ou variaveis) e operadores aritméticos que definem as
operagdes a serem realizadas.
Os principais operadores aritméticos sao:
e Adigao (+): Soma dois valores.
Exemplo:5+3=8
e Subtracdo (-): Subtrai o segundo valor do primeiro.
Exemplo: 10-4=6
e Multiplicagdo (*): Multiplica dois valores.
Exemplo: 3*4 =12
e Divisao (/): Divide o primeiro valor pelo segundo.
Exemplo: 20/5=4
e Modulo (%): Retorna o resto da diviséo inteira do primeiro valor pelo segundo.
Exemplo: 14 % 3 = 2 (pois 14 dividido por 3 é 4 com resto 2)



e Potenciagdo (** ou *): Eleva o primeiro valor a poténcia do segundo.
Exemplo: 2 » 3 = 8 (2 elevado a terceira poténcia)
Além destes, existem operadores aritméticos unarios, que operam sobre um unico valor:
e Negacéo (-): Inverte o sinal de um numero.
Exemplo: -5 (negativo de 5)
e Incremento (++): Aumenta o valor de uma variavel em 1.
Exemplo: x++ (equivale a x = x + 1)
e Decremento (--): Diminui o valor de uma variavel em 1.
Exemplo: x-- (equivale ax =x - 1)
Na avaliacdo de expressodes aritméticas complexas, € importante considerar a precedéncia dos operadores. A
ordem padrao de avaliagao é:
Parénteses (expressodes entre parénteses sao avaliadas primeiro)
Potenciacao
e Multiplicagao, divisao e modulo (da esquerda para a direita)
e Adicdo e subtracio (da esquerda para a direita)
Por exemplo, na expresséo 2 + 3 * 4, a multiplicagao tem precedéncia sobre a adicado, entdo o resultado é 14
(e ndo 20, que seria o resultado se a adicao fosse realizada primeiro).
Para alterar a ordem de avaliagdo, podem ser utilizados parénteses. Na expressao (2 + 3) * 4, os parénteses
indicam que a adi¢do deve ser realizada primeiro, resultando em 20.

Expressdes Relacionais

As expressdes relacionais sao utilizadas para comparar valores e determinar a relagao entre eles. O resultado
de uma expressao relacional € sempre um valor légico (verdadeiro ou falso).
Os principais operadores relacionais sao:
e Igual a (==): Verifica se dois valores sdo iguais.
Exemplo: 5 == 5 (verdadeiro)
e Diferente de (= ou <>): Verifica se dois valores s&o diferentes.
Exemplo: 5 |= 3 (verdadeiro)
e Maior que (>): Verifica se o primeiro valor € maior que o segundo.
Exemplo: 7 > 4 (verdadeiro)
e Menor que (<): Verifica se o primeiro valor € menor que o segundo.
Exemplo: 2 < 6 (verdadeiro)
e Maior ou igual a (>=): Verifica se o primeiro valor € maior ou igual ao segundo.
Exemplo: 8 >= 8 (verdadeiro)
e Menor ou igual a (<=): Verifica se o primeiro valor € menor ou igual ao segundo.
Exemplo: 3 <= 5 (verdadeiro)
As expressodes relacionais sdo frequentemente utilizadas em estruturas de controle condicional, como if-else,
para determinar o fluxo de execugédo de um programa.
E importante notar que, em muitas linguagens de programacéo, o operador de igualdade (==) é diferente do
operador de atribuicdo (=). O primeiro compara valores, enquanto o segundo atribui um valor a uma variavel.



Expressdes Logicas

As expressoes logicas sdo utilizadas para combinar ou modificar valores légicos (verdadeiro ou falso). Elas
sdo fundamentais para a implementacao de légica condicional em programas.
Os principais operadores légicos sao:
e E logico (AND, &&, E): Retorna verdadeiro apenas se ambos os operandos forem verdadeiros.
Tabela-verdade:
- Verdadeiro AND Verdadeiro = Verdadeiro
- Verdadeiro AND Falso = Falso
- Falso AND Verdadeiro = Falso
- Falso AND Falso = Falso
e QU logico (OR, ||, OU): Retorna verdadeiro se pelo menos um dos operandos for verdadeiro.
Tabela-verdade:
- Verdadeiro OR Verdadeiro = Verdadeiro
- Verdadeiro OR Falso = Verdadeiro
- Falso OR Verdadeiro = Verdadeiro
- Falso OR Falso = Falso
e NAO légico (NOT, !, NAO): Inverte o valor légico do operando.
Tabela-verdade:
- NOT Verdadeiro = Falso
- NOT Falso = Verdadeiro
Além destes, existem operadores légicos menos comuns, mas que podem ser encontrados em algumas
linguagens ou contextos especificos:
e QU exclusivo (XOR, *): Retorna verdadeiro se exatamente um dos operandos for verdadeiro.
Tabela-verdade:
- Verdadeiro XOR Verdadeiro = Falso
- Verdadeiro XOR Falso = Verdadeiro
- Falso XOR Verdadeiro = Verdadeiro
- Falso XOR Falso = Falso
e NAO-E (NAND): Retorna falso apenas se ambos os operandos forem verdadeiros.
Tabela-verdade:
- Verdadeiro NAND Verdadeiro = Falso
- Verdadeiro NAND Falso = Verdadeiro
- Falso NAND Verdadeiro = Verdadeiro
- Falso NAND Falso = Verdadeiro
e NAO-OU (NOR): Retorna verdadeiro apenas se ambos os operandos forem falsos.
Tabela-verdade:
- Verdadeiro NOR Verdadeiro = Falso
- Verdadeiro NOR Falso = Falso
- Falso NOR Verdadeiro = Falso
- Falso NOR Falso = Verdadeiro
Na avaliagdo de expressdes logicas complexas, também ¢é importante considerar a precedéncia dos
operadores. A ordem padrao de avaliagdao é: 1. NOT (maior precedéncia), 2. AND, 3. OR (menor
precedéncia)



Por exemplo, na expressdo A OR B AND C, o operador AND tem precedéncia sobre o operador OR, entéo a
expressao é avaliada como A OR (B AND C).

Combinacao de Expressoes

Em programacgao, € comum combinar diferentes tipos de expressbes para criar condicdes mais complexas.
Por exemplo, podemos combinar expressdes aritméticas e relacionais para verificar se o resultado de um
calculo atende a determinada condigdo:

(x+y)>10

Esta expressao primeiro calcula a soma de x e y (expressao aritmética) e depois verifica se o resultado é
maior que 10 (expressao relacional).
Também podemos combinar expressdes relacionais e légicas para criar condigdes compostas:

(idade >= 18) AND (temCarteira == verdadeiro)

Esta expressao verifica se a idade é maior ou igual a 18 E se a pessoa tem carteira de motorista.
Ao combinar diferentes tipos de expressdes, € importante considerar a precedéncia dos operadores e utilizar
parénteses quando necessario para garantir que as operagdes sejam realizadas na ordem desejada.

Precedéncia entre Diferentes Tipos de Operadores

Quando uma expressao contém diferentes tipos de operadores, a ordem de avaliagdo segue uma hierarquia
de precedéncia:
1. Operadores aritméticos (maior precedéncia)
2. Operadores relacionais
3. Operadores logicos (menor precedéncia)
Por exemplo, na expressdo A + B > C AND D == E, a ordem de avaliagao seria:
1. Calcular A + B (operador aritmético)
2. Verificar se (A + B) > C (operador relacional)
3. Verificar se D == E (operador relacional)
4. Combinar os resultados das comparagdes com AND (operador légico)

Expressdes em Diferentes Linguagens de Programacao

Embora os conceitos fundamentais de expressoes aritméticas, légicas e relacionais sejam semelhantes em
todas as linguagens de programagao, a sintaxe especifica pode variar. Alguns exemplos:

C/C++ Python Java JavaScript

intresultado=(a+b)*c; |resultado=(a+b)*c int resultado = (a + b) * ¢; | let resultado = (a + b) * c;
if(x>0&&y<10){ ifx>0andy<10: if(x>0&&y<10){ if (x>0&&y<10){




/[ codigo a ser
executado

}

# cbodigo a ser
executado

/[ codigo a ser
executado

}

/l cédigo a ser
executado

}

Boas Praticas no Uso de Expressoes

Para garantir a clareza e a correcdo de expressdes em programas, algumas boas praticas devem ser
seguidas:

Utilize parénteses para tornar explicita a ordem de avaliagdo, mesmo quando nao sao estritamente
necessarios.

Exemplo: (a+b)*cemvezdea+b*c
Evite expressdes muito complexas. Se uma expressao se tornar dificil de entender, divida-a em partes
menores e utilize variaveis intermediarias.
Tenha cuidado com comparagbes de igualdade em valores de ponto flutuante, pois erros de
arredondamento podem levar a resultados inesperados.

e Esteja atento a possiveis divisdes por zero em expressodes aritméticas.
e \Verifique se os tipos de dados dos operandos sdo compativeis com os operadores utilizados.
e Utilize nomes de variaveis significativos para tornar as expressdes mais legiveis.
e Documente expressbes complexas com comentarios explicativos.
Conclusao

As expressdes aritméticas, logicas e relacionais sdo componentes fundamentais da programacao, permitindo
a manipulacdo de dados e a implementagdo de logica condicional em algoritmos. Compreender como
funcionam os diferentes tipos de operadores, suas regras de precedéncia e como combina-los para criar
expressdes complexas é essencial para o desenvolvimento de programas eficientes e corretos.

Neste material, exploramos os principais tipos de expressdes utilizadas em programacéao, seus operadores e
regras de avaliagdo. Também discutimos como combinar diferentes tipos de expressdes e apresentamos boas
praticas para garantir a clareza e a corregdo de expressoes em programas.

O dominio desses conceitos é fundamental para avancar no estudo de estruturas de controle, como
condicionais e loops, que utilizam expressodes para determinar o fluxo de execugdo de um programa.
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Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. Introdugéo

e Base da programagido — manipulagcédo de dados e decisdes em algoritmos.
e Construidas com operandos (valores/variaveis) e operadores.
e Importancia: programas corretos e eficientes.

2. Expressoes Aritméticas

Usadas para calculos matematicos.
Operadores basicos:

1. + adigao

2. - subtracao

3. * multiplicacéo
4. /divisao

5. % maodulo (resto)

6. " ou ** potenciacéo
Operadores unarios: - (negacao), ++ incremento, -- decremento.
Precedéncia:

1. Parénteses

2. Potenciacao

3. Multiplicagao / Divisdo / Médulo

4. Adigao / Subtracao

3. Expressdes Relacionais

Comparam valores — resultado sempre légico (V/F).
Operadores:

== igual

I= ou <> diferente

> maior que

< menor que

>= maior ou igual

<= menor ou igual

Uso: estruturas de decisao (if, while, etc).

Atencado: == (comparacgao) # = (atribui¢ao).

[ ]
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4. Expressodes Logicas



Combinam valores légicos.

Operadores principais:
1. AND (&&, and) — verdadeiro se ambos verdadeiros.
2. OR (]|, or) — verdadeiro se pelo menos um verdadeiro.
3. NOT (!, not) — inverte valor légico.

Operadores adicionais: XOR, NAND, NOR.

Precedéncia logica:

1. NOT
2. AND
3. OR

5. Combinagao de Expressoes

e Exemplo: (x +y)> 10 — aritmética + relacional.
e Exemplo: (idade >= 18) AND (temCarteira == true) — relacional + ldgico.
e Uso de parénteses evita ambiguidades.

6. Precedéncia Geral

1. Aritméticos
2. Relacionais
3. Logicos

Exemplo: A+ B> CAND D ==

7. Expressodes em Diferentes Linguagens

e Conceito igual, mas sintaxe varia.

e Ex.:
o ClJavaldS — if (x>0 &&y < 10)
o Python —ifx>0andy<10

8. Boas Praticas

Use parénteses para clareza.

Evite expressdes muito complexas — divida em partes.
Cuidado com comparacgoes de ponto flutuante.

Evite divisdo por zero.



e Garanta compatibilidade de tipos.
e Nomes de variaveis significativos.
e Documente expressdes complexas.

9. Concluséao

e Essenciais para logica condicional e calculos.
e Fundamentam estruturas de controle (condig¢des, lacos).
e Dominio necessario para construir algoritmos corretos e claros.
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