Comandos de Repeticao

11 o T 11 e T 20 OSSO 1
(00 30T T e (o TV o T - PSPPI 2
Sintaxe bASICa O WHIlE:.........oeee ettt e e e e e e e e e e e e e e e e eeenaaaas 2
(=Y 1 a1 0] o 2
O comando while é especialmente Util QUANO:............uuuiiiiiiiiiiiiiiiieeeeeeeeeeeeee e e e e e e e e e e e 2
(020 30T T e (o3 e Lo ¥/ 5 7] - SO 3
Sintaxe bAsiCa dO dO-WhIlE:..........oooiiiie e 3
=Y 0T 0] o PR 3
O comando do-while é especialmente Util QUANAO:..............oooii s 3
L0 o T 0 F- 10 o [0 I8 ' 4
SINtAXE DASICA O FOK ... e e e e e e e e e ettt e e e e e e e eeeeestaaa e e eeaaaeeennnnns 4
=1 0] o[1 4
Comando for-each (for aprimorado)..........cccoeiimiiiiiirr 5
Sintaxe basica do fOr-each (€M JAVA):i..........uuiuiiiiiiiiiiiiieeeeeee 5
(=Y 1 21 o] o 5
O comando for-each & especialmente Util QUANO:.............uuiiiiiiiiiiiiee e 5
Comandos break @ CONLINUE..........oooeiiiiii e e s s s s s e s s s e e s s e s s s e e e s e e s e e s s s s s e s s s ssssssnssnnssnnsnnnnnnnnnn 6
=10 0]][0 TP TP TP 6
(=Y 1 a1 o] o 6
oo o 3=V 111 2 7= T [X3 P 7
=0 0] o] [7
Variaveis contadoras € aCUMUIAAOIAS.ccuueeirrrrmmrmmmmmmmmmmmmrrssrerrrrrrrrrrrrrrerrrrrssessssssesssssssesssssssssssssssssssssssssssses 7
=10 0]][0 PP P PR 7
(=Y 1 a1 o] o 8
Boas praticas no uso de comandos de repetiGao..........cccccccummmemmmmmcemc e ——————— 8
00T T 11 1= Vo 0 SO P 8
=Y =1 = Lo - = SOOI 9
Anexo - Resumo Estruturado/Mapa Mental Gerado por lA...........ccoiiiiiiiiemir s 1"
Introducao

Os comandos de repeticao, também conhecidos como estruturas de repetigdo ou lagos (loops), sdo recursos
fundamentais em programagéo que permitem executar um bloco de cdodigo repetidamente enquanto uma
condicao especifica for verdadeira ou por um numero determinado de vezes. Essas estruturas sao essenciais
para automatizar tarefas repetitivas, processar cole¢des de dados e implementar algoritmos iterativos. Sem os
comandos de repeticao, seria necessario duplicar cédigo, tornando os programas maiores, mais dificeis de

https://prettore.github.io/lectures.html

manter e menos eficientes. Este material explora os principais tipos de comandos de repeti¢ao utilizados em
programacao, suas sintaxes, aplicagdes e boas praticas.

Comando while

O comando while é uma estrutura de repeticdo que executa um bloco de codigo repetidamente enquanto uma
condicdo especifica for verdadeira. O nome "while" vem do inglés e significa "enquanto”, indicando que o
bloco de cddigo sera executado enquanto a condi¢ao especificada for verdadeira.

Sintaxe basica do while:

while (condig¢ao) {
// bloco de cédigo a ser repetido

s

O funcionamento do while segue os seguintes passos:

A condigao € avaliada.

Se a condigao for falsa, o bloco de cddigo € ignorado e a execugao continua apos o bloco while.
Se a condigéo for verdadeira, o bloco de codigo é executado.

Apods a execugao do bloco, o controle volta ao passo 1.

pPODN=

Exemplo:

int contador = 1;

while (contador <= 5) {
System.out.printin("Contador: " + contador);
contador++;

N

Neste exemplo, o bloco de codigo sera executado cinco vezes, imprimindo os valores de 1 a 5. A variavel
contador é inicializada com 1 e incrementada a cada iteracdo. Quando contador se torna 6, a condi¢cao
contador <= 5 se torna falsa, e o loop termina.

O comando while é especialmente util quando:

- Nao sabemos exatamente quantas vezes o loop deve ser repetido.

- O teste deve ser feito antes de iniciar a execucao do bloco de codigo.

- Ha casos em que o loop ndo deve ser executado nenhuma vez (se a condic¢ao inicial for falsa).

E importante garantir que a condigdo do while eventualmente se torne falsa, caso contrario, o loop continuara
indefinidamente, criando o que chamamos de "loop infinito". Isso geralmente ocorre quando esquecemos de
atualizar a variavel usada na condig¢édo dentro do bloco de cadigo.

Comando do-while

O comando do-while é uma variagdo do while que garante que o bloco de cddigo seja executado pelo menos
uma vez, independentemente da condicdo. Isso ocorre porque a condigao é verificada apds a execucao do
bloco, e ndo antes, como no while.

Sintaxe basica do do-while:

do {
// bloco de cédigo a ser repetido
} while (condigao);

O funcionamento do do-while segue os seguintes passos:

1. O bloco de cddigo € executado.

2. A condigao ¢ avaliada.

3. Se a condigao for verdadeira, o controle volta ao passo 1.
4. Se a condigao for falsa, o loop termina.

Exemplo:

int contador = 1;

do {
System.out.printin("Contador: " + contador);
contador++;

} while (contador <= 5);

Neste exemplo, o resultado sera o mesmo do exemplo anterior com while, mas a diferenca esta no
comportamento quando a condicdo inicial é falsa. Por exemplo:

int contador = 6;

do {
System.out.printin("Contador: " + contador);
contador++;

} while (contador <= 5);

Neste caso, mesmo que contador ja seja maior que 5 inicialmente, o bloco de cddigo sera executado uma vez,
imprimindo "Contador: 6", antes de verificar a condi¢ao e terminar o loop.

O comando do-while é especialmente util quando:

- Queremos garantir que o bloco de cddigo seja executado pelo menos uma vez.
- O teste deve ser feito apds a execucgao do bloco de codigo.
- Estamos implementando menus ou solicitando entrada do usuario até que uma condi¢ao seja atendida.

A diferenca do while para o do-while é que, no do-while, sempre acontece a primeira execug¢ao do bloco de
comandos e a expressao booleana s6 € avaliada ao final da primeira execugao.

Comando for

O comando for € uma estrutura de repeticdo mais compacta que combina inicializacdo, condigao e atualizacao
em uma Unica linha. E especialmente util quando sabemos exatamente quantas vezes o loop deve ser
repetido.

Sintaxe basica do for:

for (inicializagao; condicao; atualizacao) {
// bloco de cédigo a ser repetido

s

Os componentes do for sao:
e Inicializagao: executada apenas uma vez, no inicio do loop. Geralmente usada para inicializar uma
variavel de controle.
e Condicao: avaliada antes de cada iteragdo. Se for verdadeira, o bloco de cddigo € executado; se for
falsa, o loop termina.
e Atualizacdo: executada apds cada iteragdo. Geralmente usada para incrementar ou decrementar a
variavel de controle.
O funcionamento do for segue 0s seguintes passos:
A inicializacao é executada.
A condigéo € avaliada.
Se a condigao for falsa, o loop termina.
Se a condicao for verdadeira, o bloco de codigo é executado.
A atualizacao é executada.
O controle volta ao passo 2.

I o

Exemplo:

for (inti=1;i<=5;i++){
System.out.printin("Contador: " + i);

s

Neste exemplo, a variavel i € inicializada com 1, a condicéo i <=5 é verificada, e i € incrementado apos cada
iteracdo. O resultado sera a impressao dos numeros de 1 a 5.
O comando for é especialmente util quando:

e Sabemos exatamente quantas vezes o loop deve ser repetido.

e Estamos iterando sobre uma sequéncia de numeros.

e Queremos uma sintaxe mais compacta que combine inicializacédo, condicio e atualizacao.

E possivel omitir qualquer um dos componentes do for, mas os ponto-e-virgulas devem ser mantidos. Por
exemplo:

inti=1;
for (; i <=5;i++) {
System.out.printin("Contador: " + i);

N

Neste caso, a inicializagao foi omitida porque a variavel i ja foi inicializada fora do loop.

Comando for-each (for aprimorado)

O comando for-each, também conhecido como "for aprimorado" ou "enhanced for", € uma variagao do for
tradicional introduzida em linguagens modernas para simplificar a iteragdo sobre colegbes de dados, como
arrays e listas.

Sintaxe basica do for-each (em Java):

for (Tipo elemento : colecao) {
I/l bloco de cédigo a ser repetido

!

Onde:

- Tipo: é o tipo dos elementos na cole¢ao.

- elemento: é uma variavel que representa o elemento atual da colecédo durante cada iteragao.
- colegao: é a colegao de dados sobre a qual estamos iterando.

Exemplo:

int[] numeros = {1, 2, 3, 4, 5};
for (int numero : numeros) {
System.out.printin("Numero: " + numero);

s

Neste exemplo, o for-each itera sobre o array numeros, atribuindo cada elemento a variavel numero durante
cada iteracao. O resultado sera a impressao de todos os nimeros no array.

O comando for-each € especialmente util quando:

- Queremos iterar sobre todos os elementos de uma colegao.
- Nao precisamos do indice dos elementos durante a iteragéo.
- Queremos uma sintaxe mais limpa € menos propensa a erros.

A principal limitagcao do for-each é que ndo temos acesso ao indice dos elementos durante a iteragdo, o que
pode ser necessario em alguns casos. Além disso, nao podemos modificar a colecao durante a iteracao
usando o for-each.

Comandos break e continue

Os comandos break e continue sdo usados para controlar o fluxo dentro de loops, permitindo interromper ou
pular iteracoes.

O comando break é usado para sair imediatamente de um loop, independentemente da condigdo. Quando o
break é executado, o controle é transferido para a primeira instru¢do apos o loop.

Exemplo:

for (inti=1;i<=10;i++) {
if (i==5){
break;

}

System.out.printin("Contador: " + i);

s

Neste exemplo, o loop sera interrompido quando i for igual a 5, resultando na impresséo apenas dos niumeros
de 1a4.

O comando continue é usado para pular a iteragdo atual e continuar com a proxima. Quando o continue é
executado, o controle é transferido de volta para a condicdo do loop (no caso do while e do-while) ou para a
atualizacao (no caso do for).

Exemplo:

for (inti=1;i<=10; i++) {
if (i % 2==0){
continue;

}

System.out.printin("Contador: " + i);

!

Neste exemplo, o continue sera executado quando i for par, resultando na impressao apenas dos numeros
impares de 1 a 9.

Loops aninhados

Loops aninhados sao loops dentro de outros loops. Para cada iteragdo do loop externo, o loop interno é
executado completamente. Isso é Uutil para trabalhar com estruturas de dados multidimensionais, como
matrizes, ou para realizar operagdes mais complexas.

Exemplo:

for (inti=1;i<=3;i++) {
for (intj=1;j<=3;j++){
System.out.printin("i="+i+",j="+j);
}
}

Neste exemplo, para cada valor de i, o loop interno itera sobre todos os valores de j, resultando em 9
combinacdes diferentes de i e j.

Os loops aninhados sédo poderosos, mas devem ser usados com cuidado, pois podem levar a problemas de
desempenho se o numero de iteragdes for muito grande. Por exemplo, um loop aninhado com trés niveis onde
cada nivel itera 100 vezes resultara em 1.000.000 de iteragdes totais.

Variaveis contadoras e acumuladoras

Em muitos algoritmos que utilizam loops, € comum usar variaveis contadoras e acumuladoras para rastrear
informacdes durante as iteracdes.

Variaveis contadoras sdo usadas para contar o nimero de ocorréncias de um evento ou condi¢do. Geralmente
sao inicializadas com 0 e incrementadas quando o evento ocorre.

Exemplo:

int contador = 0;
for (inti=1;i<=100; i++) {
if (i % 2 ==0){
contador++;
}
Y

System.out.printin("Quantidade de numeros pares: " + contador);

Neste exemplo, a variavel contador € usada para contar quantos numeros pares existem entre 1 e 100.
Varidveis acumuladoras sdo usadas para acumular valores durante as iteragdes. Geralmente sao inicializadas
com 0 (para soma) ou 1 (para produto) e atualizadas a cada iteragao.

Exemplo:

int soma = 0;
for (inti=1;i<=100; i++) {
soma +=i;

}

System.out.printin("Soma dos numeros de 1 a 100: " + soma);

Neste exemplo, a variavel soma € usada para acumular a soma dos numeros de 1 a 100.

Boas praticas no uso de comandos de repeticao

Para garantir que seus comandos de repeticdo sejam claros, eficientes e livres de erros, considere as
seguintes boas praticas:

Evite loops infinitos: Certifique-se de que a condicdo do loop eventualmente se torne falsa, ou use
break para sair do loop em algum ponto.

Use o tipo de loop apropriado: Use for quando souber o niumero exato de iteragdes, while quando a
condicdo de término nao for conhecida antecipadamente, e do-while quando o bloco de cddigo
precisar ser executado pelo menos uma vez.

Mantenha os loops simples: Se um loop se tornar muito complexo, considere dividi-lo em loops
menores ou extrair parte da légica para fungbes separadas.

Evite modificar a variavel de controle dentro do bloco de cédigo em loops for: Isso pode levar a
comportamentos inesperados e dificultar a leitura do cdodigo.

Use nomes significativos para variaveis de controle: Em vez de usar i, j, k para todas as variaveis de
controle, considere usar nomes que descrevam o propodsito da variavel.

Tenha cuidado com loops aninhados: Eles podem levar a problemas de desempenho se o numero de
iteracoes for muito grande.

Use break e continue com moderacao: O uso excessivo desses comandos pode tornar o codigo dificil
de entender e manter.

Considere o uso de algoritmos e estruturas de dados eficientes: Em alguns casos, um algoritmo mais
eficiente pode eliminar a necessidade de loops aninhados ou reduzir significativamente o nimero de
iteragdes.

Conclusao

Os comandos de repeticdo sdo ferramentas essenciais em programacdo, permitindo executar blocos de
cédigo repetidamente de forma eficiente e organizada. Neste material, exploramos os principais tipos de
comandos de repetigdo: while, do-while, for e for-each, além de conceitos relacionados como break, continue,
loops aninhados e variaveis contadoras e acumuladoras.

Cada tipo de comando de repeticdo tem suas proprias caracteristicas, vantagens e limitagdes, e a escolha
entre eles depende do contexto especifico e das necessidades do programa. Ao dominar os comandos de

repeticdo e seguir as boas praticas apresentadas, vocé estara equipado para criar programas mais eficientes,
organizados e faceis de manter.

Lembre-se de que a pratica é fundamental para dominar os comandos de repeticdo. Experimente diferentes
tipos de loops em diferentes cenarios para desenvolver uma intuicdo sobre qual € o mais apropriado para

cada situagao.

Referéncias

e [| Livros e Apostilas

O O O

o

o

o

CORMEN, T. H. Introduction to Algorithms. MIT Press.

GOODRICH, M. Data Structures and Algorithms in Python.

Tenenbaum, A. M. Estruturas de Dados e Algoritmos em C

P. Feofiloff. Algoritmos em Linguagem C. Campus-Elsevier, 1a. edigdo, 2009 H. M. Deitel, P. J.
Deitel. C - Como Programar, 6a. edicdo, Pearson Education, 2011.

B. W. Kernighan, D. M. Ritchie. The C Programming Language, 2a. edi¢cao, Prentice-Hall, 1988
[Tradugao: C - A Linguagem de Programagéao. Editora Campus, 1989].

J. L. Szwarcfiter, L. Markenzon. Estruturas de Dados e seus Algoritmos, 3a. edicdo, Editora
LTC, 2010.

W. Celes, R. Cerqueira, J.L. Rangel. Introducdo a Estruturas de Dados, 1a. edicido, Editora
Campus, 2004.

N. Ziviani. Projeto de Algoritmos com Implementagbes em Pascal e C, 3a. edigdo, Editora
Cengage Learning, 2011.

T. Cormen, C. Leiserson, R. Rivest, C. Stein. Algoritmos - Teoria e Pratica, 3a. edi¢cdo, Editora
Campus, 2012.

R. Sedgewick, K. Wayne. Algorithms, 4a. edigdo, Addison -Wesley, 2011.

A. Kelley, |. Pohl. A Book on C, 4a. edicdo, Addison Wesley, 1998.

e & Recursos Online

o

©)
O

Programacéo C/C++ - Comandos de Repeticao - PUCRS -
https://www.inf.pucrs.br/~pinho/Laprol/ComandosDeRepeticao/Repeticao.html

Estruturas de Repeticao - UFPR -
https://www.inf.ufpr.br/cursos/ci067/Docs/NotasAula/notas-14_Estruturas_Repeti_c_cao.html
Lacgos de repeticdo - for, while, do-while - UFPE
https://www.cin.ufpe.br/~luciano/cursos/ce/lacos.pdf

Comandos de Repetigcao - Introducdo a Programacao - https://ip.oberlan.com/repeticoes/
Estruturas de repeticoes em Java (for, while, do-while, for-each)
https://blog.formacao.dev/estruturas-de-repeticoes-em-java-for-while-e-do-while-for-each/
W3Schools - JavaScript Loops

GeeksforGeeks - Loops in C/C++

e %% Videos e Cursos

@)

o

o

Curso em Video - Estruturas de Repeticao
Programacgéo de Computadores - Estruturas de Repeticdo - UFOP
Khan Academy - Introdug¢do a Programacgéao

https://www.inf.pucrs.br/~pinho/LaproI/ComandosDeRepeticao/Repeticao.html
https://www.inf.ufpr.br/cursos/ci067/Docs/NotasAula/notas-14_Estruturas_Repeti_c_cao.html
https://www.cin.ufpe.br/~luciano/cursos/ce/lacos.pdf
https://ip.oberlan.com/repeticoes/
https://blog.formacao.dev/estruturas-de-repeticoes-em-java-for-while-e-do-while-for-each/

10

Isencéo de Responsabilidade:

Os autores deste documento néo reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagao dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteddo aqui apresentado.

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

+ Introdugéo

e Estruturas fundamentais para repetir blocos de cdodigo.
e Usadas em tarefas repetitivas, colegoes de dados e algoritmos iterativos.
e Evitam duplicagdo de coédigo — tornam programas mais eficientes e legiveis.

11

+ Tipos de Lagos (Loops)

1. While
o Executa enquanto a condi¢ao for verdadeira.
o Teste feito antes da execugao.
o Util quando néo se sabe o nimero exato de repetigdes.
o Risco: loop infinito se a condicdo nunca se tornar falsa.
2. Do-While
o Executa o bloco ao menos uma vez, pois a condi¢ao é testada depois.
o Usado em menus, entradas de usuario.
3. For
o Estrutura compacta com inicializagao, condig¢ao e atualizagao.
o Ideal quando o numero de repeti¢cdes é conhecido.
o Pode ter componentes omitidos (mas sempre mantém os ;).
4. For-Each (aprimorado)
o lItera diretamente sobre coleg¢des (arrays, listas).
o Sintaxe mais simples, evita erros.
o Limitagbes: ndo acessa indice nem permite alterar colegao.

+ Controle de Fluxo dentro de Loops

e break — encerra o loop imediatamente.
e continue — pula a iteragdo atual e segue para a préxima.

+ Estruturas Compostas

e Loops Aninhados
o Um loop dentro de outro.
o Usado em matrizes, tabelas, calculos multidimensionais.
o Cuidado com desempenho (explosao de iteracoes).

e Variaveis Contadoras

12

o Contam ocorréncias (ex: contador++).
e Variaveis Acumuladoras
o Somam/produtos ao longo das iteragbes (ex: soma += valor).

+ Boas Praticas

Evitar loops infinitos.
Escolher o tipo de loop apropriado:
o for — quando sabe numero fixo de repeticbes.
o while — quando néo sabe de antemao.
o do-while — quando precisa garantir 12 execugao.
Loops simples > loops complexos.
Evitar alterar variaveis de controle dentro do loop.
Usar nomes significativos para variaveis (i, j — apenas em loops curtos).
Usar break/continue com moderagéo.
Atencao ao desempenho em loops aninhados.

+ Conclusao

e Comandos de repeticdo sdo essenciais para eficiéncia e organizagao.
e Diferentes tipos oferecem flexibilidade conforme a situagao.
e Boas praticas evitam erros e garantem cédigo legivel e manutenivel.

	Comandos de Repetição
	Introdução
	Comando while
	Sintaxe básica do while:
	Exemplo:
	O comando while é especialmente útil quando:

	Comando do-while
	Sintaxe básica do do-while:
	Exemplo:
	O comando do-while é especialmente útil quando:

	Comando for
	Sintaxe básica do for:
	Exemplo:

	Comando for-each (for aprimorado)
	Sintaxe básica do for-each (em Java):
	Exemplo:
	O comando for-each é especialmente útil quando:

	Comandos break e continue
	Exemplo:
	Exemplo:

	Loops aninhados
	Exemplo:

	Variáveis contadoras e acumuladoras
	Exemplo:
	Exemplo:

	Boas práticas no uso de comandos de repetição
	Conclusão
	Referências
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

