Funcoes

11 o T 11 e T 20 OSSO 1
1070 aTe7=T1 (o 3o (<IN U o= To TR 1
Principais Vantagens do USO A€ FUNGOES..........uuuiiiiiiiiiiieeeeeeeeeee ettt 2
Definicdo, Declaracao e Chamada de FUNGOES.............ooooiiiiiiiiii e 2

Sintaxe Basica de Uma FUNGAO..........cooeiiiiiiiii s s s s s ssssssssssssssnnsnnnnnnnnnnnnnnnnnnnnnnns 2
Par@metroS € ATQUIMENTOS.eiiiiiiiiite et e e e e e e e e et e e e e e e e et e e e e e e e e e s snnnnreeeeeas 3
RV 2= (o o [TN = (o o o 3

FUNGOES € ProCedimentos.cccuuuiiiiiiiiiiseiins i n e e e e e mnn e e e e e a e nnnnn e e 3
ProtOtipoS d€ FUNGOES.......oeeiiieeeeeeeeeeeeeeeee et 4

Exemplo de prototipo €M Cr. . b —— b ———————————————————— 4
EScopo de Variaveis €M FUNGOES.coooviiiiiiiii e 4
Exemplo de eSCOpO de VariAVEIS €M Ci....oeeiiiiiiiiiieieeeeeeeeeeeee ettt e e e e e e e e e e e e e 5

LY o BT T 1T - Vo [5
Exemplo de fungao recursiva para calcular 0 fatoriali...............uiviiiiiiiiiiiiieeeeeeee e, 5
Fungdes AnONIimMas € ArrOW FUNCHONS........cooo i e e e e e e e e e e e e e e e e aees 6

Funcgodes de Biblioteca vs. Fungoes Definidas pelo USUArIo..........ccoiiiiieccciii s er s s enens 6

Boas Praticas N0 USO de FUNGOES.........ccuiiiiiiiiieiiies it e 6

Aplicagoes de FUNGOES €M ProgramacGao.........ccccouuuuummummmnmnnnnnnnnnnsnnnssssssssssss s sssssssssss e e s s s s aassannnas 6

L0 o T 0 T 117 T 7

L] =T =T 0T T 7

Anexo - Resumo Estruturado/Mapa Mental Gerado por lA...........cooiiiiiirrrr e 9

Introducao

As fungdes sdo componentes fundamentais na programagao, sendo essenciais para a criagdo de codigos
mais limpos, organizados e reutilizaveis. Elas permitem dividir um programa em blocos menores e mais
gerenciaveis, facilitando a manutencao e o desenvolvimento de software. Este material explora os conceitos,
caracteristicas e aplicagdes de fungdes em programacao, fornecendo uma base sélida para sua utilizagdo em
diferentes contextos.

Conceito de Funcéo

Uma fungdo € um bloco de cédigo projetado para realizar uma tarefa especifica, que possui um nome
associado e que pode ser chamado quando necessario. Ao final da execucéo da funcdo, o controle retorna
para quem a chamou. As funcdes permitem o reaproveitamento de cédigo, evitando a repeticao de instrugdes
e tornando o programa mais eficiente e organizado.

Em termos praticos, uma fungdo pode ser vista como um subprograma para o qual podemos repassar dados
de entrada através de parametros e receber os resultados através do retorno da fungdo. Essa abordagem

https://prettore.github.io/lectures.html

segue o principio da modularizagdo, que consiste em dividir um programa em partes que serao desenvolvidas
separadamente.

Principais Vantagens do Uso de Fungdes

Reutilizacédo de codigo: Elimina a repeticao de cédigo (principio DRY - "Don't Repeat Yourself").
Organizacéo: Divide o cédigo em blocos menores e mais faceis de gerenciar.

Facilidade de manutencao: Mudangas em uma fungao precisam ser feitas apenas em um lugar, sem
afetar todo o programa.

Abstracao: Permite focar no "o que" a fungdo faz, ndo no "como" ela faz.

Colaboracao: Facilita a divisdo de tarefas em um projeto, onde diferentes desenvolvedores podem
trabalhar em diferentes fungoes.

Testabilidade: Fungbes podem ser testadas isoladamente antes de serem integradas ao programa
principal.

Definicdo, Declaracdo e Chamada de Fungodes

E importante distinguir trés momentos diferentes no uso de fungdes:

Definicdo de funcdo: E quando se constréi a funcdo explicitando o seu nome, tipo de retorno,
parametros e o0 seu corpo (instru¢des e variaveis locais).

Declaragdo da fungdo (protétipo): E somente uma declaragdo contendo o nome da fungao, tipo de
retorno e parametros. O corpo da fungdo nao é explicitado, pois supde-se que ela foi definida em
algum outro lugar.

Chamada (invocacgao) da fungdo: Quando se usa a fungéo, chamando-a pelo seu nhome e passando 0s
parametros que se deseja.

Sintaxe Basica de uma Funcao

A forma geral da definicdo de uma fungao varia de acordo com a linguagem de programacgéo, mas geralmente
segue um padrao similar. Abaixo esta um exemplo em C:

c

tipo_de_retorno nome_da_fungao(tipo_param1 param1, tipo_param2 paramz, ...) {
/I Declaragdes de variaveis locais
/I Instrucdes
return valor_de_retorno; // Se a funcéo retornar um valor

A

Os principais componentes da sintaxe sao:

Tipo de retorno: Especifica o tipo do valor que a fungao retorna (int, float, char, etc.) ou void se nenhum
valor é retornado.

Nome da fungao: Deve ser descritivo, seguindo as convengdes de nomenclatura da linguagem.
Parametros: Valores que sado passados para a fungdo quando ela é chamada.

e Corpo da fungado: Bloco de codigo delimitado por chaves que contém as instrucbes a serem
executadas.
e Instrugdo return: Usada para retornar um valor ao chamador da fung¢ao (exceto em fungdes void).

Parametros e Argumentos

Os parémetros s&o variaveis que a funcido recebe para realizar suas operacdes. Eles sao definidos na
declaracao da funcdo e podem ser de qualquer tipo de dados suportado pela linguagem. Os valores reais
passados para esses parametros quando a fungéo é chamada sao chamados de argumentos.
Existem duas formas principais de passagem de parametros:
e Passagem por valor: O valor do argumento é copiado para o parametro da funcio. Alteragcbes no
parametro dentro da funcao nao afetam o argumento original.
e Passagem por referéncia: E passada uma referéncia (ou endereco) do argumento para a funcéo.
Alteragdes no parametro dentro da fungao afetam o argumento original.
Exemplo de fungdo com parametros em C:
e
int somar(int a, int b) {
return a + b;
}
/l Chamada da fungao
int resultado = somar(5, 3); // resultado = 8

Valor de Retorno

Frequentemente, uma fung¢do faz algum tipo de processamento ou calculo e precisa retornar o resultado
desse procedimento. O valor de retorno é especificado usando a instrugado return, seguida do valor a ser
retornado. O tipo desse valor deve corresponder ao tipo de retorno declarado na definicao da funcéo.
Uma funcao pode ter multiplos pontos de retorno, mas uma vez que um return é executado, a fungao termina
imediatamente, e o controle retorna ao chamador.
Exemplo de fun¢do com retorno em C:
g
int quadrado(int x) {
return x * x;
}
/l Chamada da fungéo
int resultado = quadrado(4); // resultado = 16

Funcoes e Procedimentos

Em algumas linguagens e contextos, faz-se uma distincéo entre fun¢des e procedimentos:
e Funcao: Retorna um valor para o chamador.

e Procedimento: Nao retorna valor, apenas executa uma série de instrucoes.
Em C, um procedimento é implementado como uma fungao com tipo de retorno void:
e
void imprimirMensagem() {

printf("Ola, mundo!

"

/ Nao ha instrugao return com valor

!

Prototipos de Fungdes

Em linguagens como C e C++, é comum declarar protétipos de fungdes no inicio do programa ou em arquivos
de cabecalho. Um protétipo informa ao compilador sobre a existéncia da fungao, seu tipo de retorno e seus
parametros, antes que a fungéo seja efetivamente definida ou chamada.

Exemplo de protétipo em C:

c
Il Protétipo
int somar(int a, int b);
int main() {
int resultado = somar(5, 3);
printf("Resultado: %d
", resultado);
return 0O;
}
/I Definicdo da funcao
int somar(int a, int b) {
return a + b;

!

Escopo de Variaveis em Fungbes

O escopo de uma variavel refere-se a regido do programa onde a variavel é visivel e pode ser acessada. Em
relagao as funcdes, podemos ter:
e Variaveis locais: Sao declaradas dentro de uma fungéo e s6 podem ser acessadas dentro dela. Elas
sao criadas quando a fungcao é chamada e destruidas quando a fungao termina.
e Varidveis globais: Sdo declaradas fora de qualquer funcdo e podem ser acessadas por qualquer
fungéo no programa.
e Parametros: Sao variaveis locais especiais que recebem os valores passados para a funcao.

Exemplo de escopo de variaveis em C:

c
#include <stdio.h>
/I Variavel global
int global = 10;
void funcao() {
[/l Variavel local
int local = 5;
printf("Global: %d, Local: %d
", global, local);
/I local so é acessivel dentro desta fungcao
}
int main() {
funcao();
printf("Global: %d
", global);
/I printf("Local: %d
" local); // Erro: local ndo é acessivel aqui
return 0O;

a

Recursividade

Uma funcéao recursiva é aquela que chama a si mesma diretamente ou indiretamente. A recursividade € uma
técnica poderosa para resolver problemas que podem ser divididos em subproblemas menores e similares.
Toda fungado recursiva deve ter uma condicdo de parada (caso base) para evitar recursdo infinita. A
recursividade pode ser uma alternativa elegante a loops iterativos em muitos casos.

Exemplo de funcao recursiva para calcular o fatorial:

c
int fatorial(int n) {
/I Caso base
if (n<=1){
return 1;
}
/I Caso recursivo
else {
return n * fatorial(n - 1);
}
}

Funcdes Anbénimas e Arrow Functions

Em linguagens modernas como JavaScript, Python e Java, existem conceitos como fungdes andnimas
(lambdas) e arrow functions, que permitem definir fungdes de forma mais concisa, especialmente para uso
como callbacks ou em operagdes de curta duragao.
Exemplo de arrow function em JavaScript:
"javascript
/I Fungao tradicional
function somar(a, b) {
return a + b;
}
/I Arrow function equivalente
const somarArrow = (a, b) =>a + b;

Funcdes de Biblioteca vs. Funcdes Definidas pelo Usuario

e Funcdes de biblioteca: Sdo fungbes pré-definidas fornecidas pela linguagem de programacgao ou por
bibliotecas externas. Exemplos incluem printf(), scanf() em C, ou Math.sqrt() em JavaScript.
e Funcdes definidas pelo usuario: Sdo fungdes criadas pelo programador para atender a necessidades
especificas do programa.
Ambos os tipos de fungdes sido essenciais para o desenvolvimento de software eficiente e bem estruturado.

Boas Praticas no Uso de Fungoes

Nomes descritivos: Use nomes que descrevam claramente o que a funcgao faz.

Funcdes pequenas e focadas: Cada fungao deve realizar uma Unica tarefa bem definida.

Documentagao: Documente o propdsito da funcao, seus parametros e valor de retorno.

Evite efeitos colaterais: Fungdes ndo devem modificar variaveis globais ou parémetros

inesperadamente.

e Limite o nimero de parametros: Muitos parametros podem indicar que a funcdo esta fazendo muitas
coisas.

e Consisténcia nos tipos de retorno: Mantenha consisténcia nos valores retornados em diferentes
caminhos de execucéo.

e Teste unitario: Teste cada fungao isoladamente para garantir seu correto funcionamento.

Aplicacoes de Funcdes em Programacao

As fungdes sao utilizadas em praticamente todos os aspectos da programacao, incluindo:
e Manipulagédo de dados: Processamento, transformacéao e validagao de dados.
e |Interface com o usuario: Captura de entrada, exibicao de saida, menus interativos.
e Algoritmos: Implementagao de algoritmos de ordenagéo, busca, etc.

e Acesso a recursos: Operagoes de arquivo, banco de dados, rede.
e Modularizagdo: Divisdo de programas complexos em componentes gerenciaveis.
e Reutilizagdo de cédigo: Bibliotecas e frameworks.

Conclusao

As fungdes sdo componentes fundamentais na programagao que permitem a modularizagao, reutilizagéo de
cédigo e organizacao logica dos programas. Elas sdo essenciais para o desenvolvimento de software
eficiente, manutenivel e escalavel.

Ao dominar o conceito de fungdes, seus parametros, valores de retorno e escopo, o programador adquire uma
ferramenta poderosa para resolver problemas complexos de forma elegante e estruturada. A capacidade de
dividir um problema em subproblemas menores e resolvé-los através de funcdes bem definidas é uma
habilidade crucial para qualquer desenvolvedor de software.

Referéncias

e | _|Livros e Apostilas

O O O O

o

O

CORMEN, T. H. Introduction to Algorithms. MIT Press.

GOODRICH, M. Data Structures and Algorithms in Python.

Tenenbaum, A. M. Estruturas de Dados e Algoritmos em C

P. Feofiloff. Algoritmos em Linguagem C. Campus-Elsevier, 1a. edigdo, 2009 H. M. Deitel, P. J.
Deitel. C - Como Programar, 6a. edigdo, Pearson Education, 2011.

B. W. Kernighan, D. M. Ritchie. The C Programming Language, 2a. edi¢gao, Prentice-Hall, 1988
[Tradugao: C - A Linguagem de Programacéao. Editora Campus, 1989].

J. L. Szwarcfiter, L. Markenzon. Estruturas de Dados e seus Algoritmos, 3a. edi¢cdo, Editora
LTC, 2010.

W. Celes, R. Cerqueira, J.L. Rangel. Introducao a Estruturas de Dados, 1a. edigido, Editora
Campus, 2004.

N. Ziviani. Projeto de Algoritmos com Implementagbes em Pascal e C, 3a. edicdo, Editora
Cengage Learning, 2011.

T. Cormen, C. Leiserson, R. Rivest, C. Stein. Algoritmos - Teoria e Pratica, 3a. edi¢cao, Editora
Campus, 2012.

R. Sedgewick, K. Wayne. Algorithms, 4a. edigéo, Addison -Wesley, 2011.

A. Kelley, |. Pohl. A Book on C, 4a. edicao, Addison Wesley, 1998.

e & Recursos Online

o

<Direto ao Ponto 44> As funcdes e 0s procedimentos -
https://www.dio.me/articles/direto-ao-ponto-44-as-funcoes-e-os-procedimentos
Fungbes na Programagdo: O Que Sdo e Como Cria-las de Forma Eficiente -

https://www.dio.me/articles/fun -na-program -0-que-sao-e-como-cria-las-de-forma-efici
nte-f3ed466dbbab
Funcgdes - Programacéo 1 - Engenharia -

https://wiki.sj.ifsc.edu.br/index.php/Fun%C3%A7%C3%B5es - Programa%C3%A7%C3%A30
1 - Engenharia

https://www.dio.me/articles/direto-ao-ponto-44-as-funcoes-e-os-procedimentos
https://www.dio.me/articles/funcoes-na-programacao-o-que-sao-e-como-cria-las-de-forma-eficiente-f3ed466dbbab
https://www.dio.me/articles/funcoes-na-programacao-o-que-sao-e-como-cria-las-de-forma-eficiente-f3ed466dbbab
https://wiki.sj.ifsc.edu.br/index.php/Fun%C3%A7%C3%B5es_-_Programa%C3%A7%C3%A3o_1_-_Engenharia
https://wiki.sj.ifsc.edu.br/index.php/Fun%C3%A7%C3%B5es_-_Programa%C3%A7%C3%A3o_1_-_Engenharia

o Aula - Procedimentos e Fungdes - https://gabrielbueno072.qithub.io/rea-aed/aula_func.html
o W3Schools - JavaScript Functions
o MDN Web Docs - Functions in JavaScript
o GeeksforGeeks - Functions in C
o %% Videos e Cursos
O
O

Curso em Video - Fungbes em Programagao
Programacéo de Computadores - Fungdes e Procedimentos - UFOP
o Khan Academy - Introdug¢ao a Programacgéao: Fungodes

Isencao de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do contetido aqui compilado deve ser feita com a devida autorizagao dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteddo aqui apresentado.

https://gabrielbueno072.github.io/rea-aed/aula_func.html

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. Conceito de Funcgao

e Bloco de cédigo nomeado para executar tarefa especifica
e Reutilizagdo e modularizagao do cédigo
e Entrada: parametros — Saida: valor de retorno

2. Vantagens do Uso

Reutilizagao de codigo (principio DRY)
Organizagao (blocos menores)

Facilidade de manutengao

Abstragao (foco no "o que", ndo no "como")
Colaboracao (divisdo de tarefas)
Testabilidade (testes isolados)

3. Definicdo, Declaragdo e Chamada

e Definigdo: nome, tipo de retorno, parametros e corpo
e Declaragao (protoétipo): assinatura sem corpo (C/C++)
e Chamada: invocacdo com argumentos

4. Sintaxe Basica

Tipo de retorno

Nome da funcéao
Parametros

Corpo (instrugdes)

return (quando aplicavel)

5. Parametros e Argumentos

e Passagem por valor — copia, ndo altera original
e Passagem por referéncia — altera original

6. Valor de Retorno

e Retorna resultado ao chamador
e Finaliza execucéo da fungao

7. Fungdes vs Procedimentos

e Fung¢ao — retorna valor
e Procedimento — nao retorna valor (void)

8. Protdtipos

e Declaragao prévia (ex.: em C/C++)
e Permite uso antes da definicao

9. Escopo de Variaveis

e Local (dentro da fungéo)
e Global (acessivel em todo programa)
e Parametros (variaveis locais especiais)

10. Recursividade

e Funcao que chama a si mesma
e Necessario caso base para evitar loop infinito
e Usada em problemas divisiveis em subproblemas

11. Fungbes Anbnimas e Arrow Functions

e Definidas sem nome (lambdas, arrow functions)
e Uso em callbacks, fungdes rapidas e concisas

12. Fungbes de Biblioteca vs. Definidas pelo Usuario

e Biblioteca: ja fornecidas (ex.: printf, Math.sqrt)
e Usuario: criadas conforme necessidade

13. Boas Praticas

Nomes descritivos

Fungdes pequenas e coesas
Documentacéao

Evitar efeitos colaterais
Poucos parametros

e Consisténcia nos retornos
e Testes unitarios

11

14. Aplicacoes

Manipulacdo de dados

Interface com usuario

Algoritmos (busca, ordenacgao, etc.)
Acesso a arquivos, banco de dados, rede
Modularizagao e frameworks

	Funções
	Introdução
	Conceito de Função
	Principais Vantagens do Uso de Funções
	Definição, Declaração e Chamada de Funções

	Sintaxe Básica de uma Função
	Parâmetros e Argumentos
	Valor de Retorno

	Funções e Procedimentos
	Protótipos de Funções
	Exemplo de protótipo em C:

	Escopo de Variáveis em Funções
	Exemplo de escopo de variáveis em C:

	Recursividade
	Exemplo de função recursiva para calcular o fatorial:
	Funções Anônimas e Arrow Functions

	Funções de Biblioteca vs. Funções Definidas pelo Usuário
	Boas Práticas no Uso de Funções
	Aplicações de Funções em Programação
	Conclusão
	Referências
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

