
1

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de conteúdos bibliográficos
disponíveis gratuitamente na Internet.
Ponteiros e Alocação Dinâmica de Vetores
Introdução..1
Ponteiros: Conceitos Básicos... 1

Declaração e Inicialização de Ponteiros... 2
Operadores de Ponteiros.. 2

Aritmética de Ponteiros... 2
Ponteiros e Vetores... 3
Alocação Estática vs. Dinâmica.. 3

Funções para Alocação Dinâmica de Memória...4
Função sizeof.. 4

Alocação Dinâmica de Vetores... 4
Exemplo completo de alocação dinâmica de vetor em C:...5

Alocação Dinâmica de Matrizes.. 6
Exemplo completo de alocação dinâmica de matriz em C:...6

Problemas Comuns e Boas Práticas...7
Boas práticas:..7

Aplicações de Ponteiros e Alocação Dinâmica..7
Conclusão..8
Referências..8

Introdução
Ponteiros e alocação dinâmica de memória são conceitos fundamentais na programação, especialmente em
linguagens como C e C++. Eles permitem um controle mais preciso sobre a memória do computador,
possibilitando a criação de estruturas de dados flexíveis e eficientes. Este material explora os conceitos,
características e aplicações de ponteiros e alocação dinâmica de vetores, fornecendo uma base sólida para
sua utilização em diferentes contextos de programação.

Ponteiros: Conceitos Básicos
Um ponteiro é uma variável cujo conteúdo é um endereço de memória. Enquanto variáveis comuns
armazenam valores de um determinado tipo (int, float, char, etc.), os ponteiros armazenam endereços onde
esses valores estão localizados na memória do computador. Em outras palavras, um ponteiro "aponta" para
outra posição de memória.
A importância dos ponteiros está relacionada a vários aspectos:
1. Manipulação eficiente de grandes volumes de dados​
2. Implementação de estruturas de dados complexas​
3. Comunicação entre funções através de parâmetros por referência​

https://prettore.github.io/lectures.html

2

4. Alocação dinâmica de memória​
5. Acesso a hardware e recursos do sistema operacional

Declaração e Inicialização de Ponteiros
Para declarar um ponteiro em C, utiliza-se o operador asterisco (*) antes do nome da variável. O tipo do
ponteiro deve corresponder ao tipo de dado para o qual ele apontará.

Sintaxe básica em C:​
​
tipo *nome_do_ponteiro;

Exemplos em C:​
​
int *pi; // Ponteiro para inteiro​
char *pc; // Ponteiro para caractere​
float *pf; // Ponteiro para float​
double *pd; // Ponteiro para double

Um ponteiro recém-declarado não aponta para nenhum local válido na memória. É necessário inicializá-lo
antes de usá-lo, atribuindo a ele um endereço válido. Existem várias formas de inicializar um ponteiro:

●​ Atribuindo o endereço de uma variável existente em C:​
int a = 10;​
int *p = &a; // p recebe o endereço de a​

●​ Atribuindo NULL (ponteiro nulo) em C:​
int *p = NULL; // p não aponta para nenhum endereço válido​

●​ Através de alocação dinâmica de memória em C:​
int *p = (int *) malloc(sizeof(int)); // Aloca espaço para um inteiro​

Operadores de Ponteiros
Existem dois operadores principais relacionados a ponteiros:

●​ Operador de endereço (&): Retorna o endereço de memória de uma variável.​
int a = 10;​
int *p = &a; // p recebe o endereço de a​

●​ Operador de indireção ou desreferenciação (*): Acessa o valor armazenado no endereço apontado
pelo ponteiro.​
int a = 10;​
int *p = &a;​
printf("%d", *p); // Imprime 10, o valor armazenado no endereço apontado por p

Aritmética de Ponteiros
A aritmética de ponteiros permite manipular endereços de memória de forma controlada. As operações
básicas incluem:

3

●​ Incremento e decremento em C:​
int *p = &array[0];​
p++; // p agora aponta para array[1]​
p--; // p volta a apontar para array[0]​

●​ Adição e subtração de inteiros em C:​
int *p = &array[0];​
p = p + 3; // p agora aponta para array[3]​
p = p - 2; // p agora aponta para array[1]​

●​ Subtração de ponteiros em C:​
int *p1 = &array[5];​
int *p2 = &array[2];​
int diff = p1 - p2; // diff = 3 (diferença em número de elementos)​

É importante notar que a aritmética de ponteiros leva em consideração o tamanho do tipo de dado para o qual
o ponteiro aponta. Por exemplo, se p é um ponteiro para int e cada int ocupa 4 bytes, p++ incrementará o
endereço em 4 bytes, não em 1.

Ponteiros e Vetores
Em C, existe uma relação muito forte entre ponteiros e vetores. Na verdade, o nome de um vetor é
essencialmente um ponteiro constante para o primeiro elemento do vetor.

int vetor[5] = {10, 20, 30, 40, 50};​
int *p = vetor; // Equivalente a int *p = &vetor[0];
// Acessando elementos do vetor usando ponteiro​
printf("%d", *p); // Imprime 10 (vetor[0])​
printf("%d", *(p+1)); // Imprime 20 (vetor[1])​
printf("%d", *(p+2)); // Imprime 30 (vetor[2])

Esta relação permite duas notações equivalentes para acessar elementos de um vetor:

●​ Notação de índice: vetor[i]
●​ Notação de ponteiro: *(vetor + i) ou *(p + i)

Alocação Estática vs. Dinâmica
Existem duas formas principais de alocar memória para variáveis e estruturas de dados:

●​ Alocação Estática:​
 - Ocorre em tempo de compilação​
 - Tamanho fixo e predefinido​
 - Variáveis locais e globais são alocadas estaticamente​
 - Exemplo: `int vetor[100];`

●​ Alocação Dinâmica:​
 - Ocorre em tempo de execução​

4

 - Tamanho pode ser determinado durante a execução do programa​
 - Requer uso de funções específicas (malloc, calloc, realloc, free)​
 - Exemplo: `int *vetor = (int *) malloc(n * sizeof(int));`

A alocação estática tem a vantagem da simplicidade, mas pode desperdiçar memória se o tamanho máximo
necessário for superestimado, ou causar erros se for subestimado. A alocação dinâmica permite um uso mais
eficiente da memória, alocando exatamente o necessário quando necessário.

Funções para Alocação Dinâmica de Memória
Em C, existem quatro funções principais para gerenciamento de memória dinâmica, todas definidas na
biblioteca stdlib.h:

●​ malloc (memory allocation):​
 - Aloca um bloco contíguo de memória do tamanho especificado​
 - Retorna um ponteiro void* para o início do bloco alocado​
 - Não inicializa a memória alocada​
 - Sintaxe: `void* malloc(size_t size);`

●​ calloc (contiguous allocation):​
 - Aloca um bloco contíguo de memória para um array de elementos​
 - Inicializa todos os bytes com zero​
 - Sintaxe: `void* calloc(size_t num_elements, size_t element_size);`

●​ realloc (reallocation):​
 - Redimensiona um bloco de memória previamente alocado​
 - Preserva o conteúdo original até o mínimo entre o tamanho antigo e o novo​
 - Sintaxe: `void* realloc(void* ptr, size_t new_size);`

●​ free:​
 - Libera um bloco de memória previamente alocado​
 - Sintaxe: `void free(void* ptr);`

Função sizeof
A função sizeof é um operador em C que retorna o tamanho em bytes de um tipo de dado ou variável. É
frequentemente usado em conjunto com as funções de alocação dinâmica para determinar o tamanho correto
a ser alocado.

●​ int *p = (int *) malloc(10 * sizeof(int)); // Aloca espaço para 10 inteiros​

O uso de sizeof torna o código mais portável, pois o tamanho dos tipos de dados pode variar entre diferentes
compiladores e plataformas.

Alocação Dinâmica de Vetores
Um vetor dinâmico é um vetor cujo tamanho é determinado durante a execução do programa, não em tempo
de compilação. Isso permite criar vetores do tamanho exato necessário, economizando memória.
Passos para alocar um vetor dinamicamente:

5

●​ Declarar um ponteiro do tipo desejado:​
int *vetor;​

●​ Determinar o número de elementos (pode ser através de entrada do usuário):​
int n;​
printf("Digite o tamanho do vetor: ");​
scanf("%d", &n);​

●​ Alocar memória usando malloc ou calloc:​
vetor = (int *) malloc(n * sizeof(int));​
// ou​
vetor = (int *) calloc(n, sizeof(int));​

●​ Verificar se a alocação foi bem-sucedida:​
if (vetor == NULL) {​
 printf("Erro: Memória insuficiente!");​
 exit(1);​
}​

●​ Usar o vetor normalmente:​
for (int i = 0; i < n; i++) {​
 vetor[i] = i * 10;​
}​

●​ Liberar a memória quando não for mais necessária:​
free(vetor);​

Exemplo completo de alocação dinâmica de vetor em C:

#include <stdio.h>​
#include <stdlib.h>
int main() {​
 int *vetor;​
 int n, i;​
 ​
 printf("Digite o tamanho do vetor: ");​
 scanf("%d", &n);​
 ​
 // Alocação dinâmica​
 vetor = (int *) malloc(n * sizeof(int));​
 ​
 if (vetor == NULL) {​
 printf("Erro: Memória insuficiente!");​

 // Preenchendo o vetor​
 for (i = 0; i < n; i++) {​
 printf("Digite o valor para posição %d: ", i+1);​
 scanf("%d", &vetor[i]);​
 }​
 ​
 // Exibindo o vetor​
 printf("Valores do vetor:");​
 for (i = 0; i < n; i++) {​
 printf("%d ", vetor[i]);​
 }​
 ​
 // Liberando a memória​
 free(vetor);​
 ​

6

 exit(1);​
 }

 return 0;​
}

Alocação Dinâmica de Matrizes
A alocação dinâmica de matrizes é mais complexa que a de vetores, pois envolve múltiplas dimensões.
Existem várias abordagens para alocar matrizes dinamicamente:

●​ Alocação contígua (vetor linear):​
int *matriz = (int *) malloc(linhas * colunas * sizeof(int)); // Acesso: matriz[i * colunas + j]​

●​ Vetor de ponteiros (mais comum):​
int **matriz = (int **) malloc(linhas * sizeof(int *));​
for (int i = 0; i < linhas; i++) {​
 matriz[i] = (int *) malloc(colunas * sizeof(int));​
}// Acesso: matriz[i][j]​

●​ Alocação em bloco único com vetor de ponteiros:​
int **matriz = (int **) malloc(linhas * sizeof(int *));​
int *dados = (int *) malloc(linhas * colunas * sizeof(int));​
for (int i = 0; i < linhas; i++) {​
 matriz[i] = &dados[i * colunas];​
}// Acesso: matriz[i][j]​

Exemplo completo de alocação dinâmica de matriz em C:

#include <stdio.h>​
#include <stdlib.h>
int main() {​
 int **matriz;​
 int linhas, colunas, i, j;​
 ​
 printf("Digite o número de linhas: ");​
 scanf("%d", &linhas);​
 printf("Digite o número de colunas: ");​
 scanf("%d", &colunas);​
 ​
 // Alocação dinâmica da matriz​
 matriz = (int **) malloc(linhas * sizeof(int *));​
 if (matriz == NULL) {​
 printf("Erro: Memória insuficiente!");​
 exit(1);​
 }​

 // Preenchendo a matriz​
 for (i = 0; i < linhas; i++) {​
 for (j = 0; j < colunas; j++) {​
 matriz[i][j] = i * colunas + j;​
 }​
 }​
 ​
 // Exibindo a matriz​
 printf("Matriz:");​
 for (i = 0; i < linhas; i++) {​
 for (j = 0; j < colunas; j++) {​
 printf("%3d ", matriz[i][j]);​
 }​
 printf("​
");​
 }​
 ​

7

 ​
 for (i = 0; i < linhas; i++) {​
 matriz[i] = (int *) malloc(colunas * sizeof(int));​
 if (matriz[i] == NULL) {​
 printf("Erro: Memória insuficiente!");​
 exit(1);​
 }​
 }

 // Liberando a memória​
 for (i = 0; i < linhas; i++) {​
 free(matriz[i]);​
 }​
 free(matriz);​
 ​
 return 0;​
}​

Problemas Comuns e Boas Práticas
●​ Vazamento de memória (memory leak):​

 - Ocorre quando a memória alocada não é liberada após o uso​
 - Pode levar a consumo excessivo de memória e falhas no programa​
 - Solução: Sempre usar free() para liberar memória alocada dinamicamente

●​ Ponteiros pendentes (dangling pointers):​
 - Ponteiros que apontam para memória já liberada​
 - Acessar memória através desses ponteiros causa comportamento indefinido​
 - Solução: Atribuir NULL a ponteiros após liberar sua memória

●​ Acesso fora dos limites:​
 - Acessar posições de memória além do alocado​
 - Pode causar corrupção de dados ou falhas no programa​
 - Solução: Verificar limites antes de acessar elementos

●​ Fragmentação de memória:​
 - Ocorre quando alocações e liberações frequentes criam "buracos" na memória​
 - Pode levar a falhas de alocação mesmo com memória total suficiente​
 - Solução: Planejar alocações para minimizar fragmentação

Boas práticas:
●​ Sempre verificar se a alocação foi bem-sucedida antes de usar o ponteiro
●​ Liberar toda memória alocada quando não for mais necessária
●​ Atribuir NULL a ponteiros após liberar sua memória
●​ Usar funções auxiliares para encapsular alocação e liberação de estruturas complexas
●​ Considerar o uso de ferramentas de detecção de vazamento de memória (como Valgrind)

Aplicações de Ponteiros e Alocação Dinâmica
●​ Estruturas de dados dinâmicas:​

 - Listas encadeadas​
 - Árvores​

8

 - Grafos​
 - Tabelas hash

●​ Manipulação de strings:​
 - Concatenação​
 - Cópia​
 - Comparação

●​ Passagem de parâmetros por referência:​
 - Permitindo que funções modifiquem variáveis originais

●​ Implementação de arrays multidimensionais:​
 - Matrizes​
 - Tensores

●​ Gerenciamento eficiente de recursos:​
 - Carregamento sob demanda​
 - Cache de dados

Conclusão
Ponteiros e alocação dinâmica de memória são ferramentas poderosas que permitem aos programadores um
controle preciso sobre a memória do computador. Eles são fundamentais para a implementação de estruturas
de dados eficientes e flexíveis, bem como para o desenvolvimento de software que utiliza recursos de forma
otimizada.
Embora o uso de ponteiros e alocação dinâmica introduza complexidade adicional e potenciais problemas
como vazamentos de memória, o domínio desses conceitos é essencial para programadores que desejam
criar software eficiente e robusto, especialmente em linguagens como C e C++.
Com a prática e a atenção às boas práticas de programação, é possível aproveitar o poder dos ponteiros e da
alocação dinâmica enquanto se evita as armadilhas comuns associadas a eles.

Referências
●​ 📖 Livros e Apostilas

○​ CORMEN, T. H. Introduction to Algorithms. MIT Press.
○​ GOODRICH, M. Data Structures and Algorithms in Python.
○​ Tenenbaum, A. M. Estruturas de Dados e Algoritmos em C
○​ P. Feofiloff. Algoritmos em Linguagem C. Campus-Elsevier, 1a. edição, 2009 H. M. Deitel, P. J.

Deitel. C - Como Programar, 6a. edição, Pearson Education, 2011.
○​ B. W. Kernighan, D. M. Ritchie. The C Programming Language, 2a. edição, Prentice-Hall, 1988

[Tradução: C - A Linguagem de Programação. Editora Campus, 1989].
○​ J. L. Szwarcfiter, L. Markenzon. Estruturas de Dados e seus Algoritmos, 3a. edição, Editora

LTC, 2010.
○​ W. Celes, R. Cerqueira, J.L. Rangel. Introdução a Estruturas de Dados, 1a. edição, Editora

Campus, 2004.
○​ N. Ziviani. Projeto de Algoritmos com Implementações em Pascal e C, 3a. edição, Editora

Cengage Learning, 2011.

9

○​ T. Cormen, C. Leiserson, R. Rivest, C. Stein. Algoritmos - Teoria e Prática, 3a. edição, Editora
Campus, 2012.

○​ R. Sedgewick, K. Wayne. Algorithms, 4a. edição, Addison -Wesley, 2011.
○​ A. Kelley, I. Pohl. A Book on C, 4a. edição, Addison Wesley, 1998.

●​ 🌐 Recursos Online
○​ Alocação Dinâmica em C - Linguagem C -

https://linguagemc.com.br/alocacao-dinamica-de-memoria-em-c/
○​ Ponteiros e Vetores / Alocação Dinâmica - CIn UFPE -

https://www.cin.ufpe.br/~if669ec/aulas/aulaIP-PonteirosVetores.pdf
○​ Alocação Dinâmica de Vetores e Matrizes - Curso de C -

http://mtm.ufsc.br/~azeredo/cursoC/aulas/ca70.html
○​ Ponteiros - Programação em C/C++ -

https://www.inf.pucrs.br/~pinho/PRGSWB/Ponteiros/ponteiros.html
○​ GeeksforGeeks - Dynamic Memory Allocation in C
○​ Tutorialspoint - C - Pointers

●​ 📽 Vídeos e Cursos
○​ Curso em Vídeo - Ponteiros em C
○​ Programação de Computadores - Alocação Dinâmica - UFOP
○​ Khan Academy - Introdução à Programação: Ponteiros

Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e fontes originais.
Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores dos direitos autorais
originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informações contidas neste documento.
Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteúdo aqui apresentado.

https://linguagemc.com.br/alocacao-dinamica-de-memoria-em-c/
https://www.cin.ufpe.br/~if669ec/aulas/aulaIP-PonteirosVetores.pdf
http://mtm.ufsc.br/~azeredo/cursoC/aulas/ca70.html
https://www.inf.pucrs.br/~pinho/PRGSWB/Ponteiros/ponteiros.html

1-;'un
FLCLÜv'l € _ é

Uc
\:-'’-~&Q=

lc.o-aNi#’v,,4C4ü O€
n.4«ocs v$tuôNt\'

ECéjS C
b4üé

Ü{ÚC dAS

'VP}\tAVGb C G,eO

IOQ Me v\, QJt P\Pb FIT R

91 ou IR A Fox,cja De Me LO90

e11====:ii]c
FaE 1\1 É,0 Gb;LvQ„;TVLbLC P»+C\t

no OJQ Or\ AÂê. :Loei\TRT–i)='m'\
q N,tF+\ ..É 5 T Á„ VV ;:4 9 €

eqNILü&
jhl 1\NÓ tin_

1) É€cçB t,„o, oe UnIt

==\ \Jb'.& AI abl

kILl (v3 t \ ;/+cÃO) b ELE caIA O w4Mio,tV\t\ N\

E NÉ. D-q

O 1,vÊ FAiCA oe \;eTar,_eXfoNIÉ tv\os.

'çjt qc db

0-1 A/êf\A 'c#
;s

&,K,+yC.1) E,O.

eçAlilí;cl~.+ Fa

T4AÊ,hN\+\# O €)

0 nAn
\1) JR CLqnn ü11PO

le - l)o-'tFt\RC
-l.NT#V€1wt

19.+ + 7/ Qr , „,, Ay\&grt'J 1
qb - + 4/ \x A ÊÉQ' LU_

Llc8Í),b
Fw 44 VM

Ü:–#lst/MAI/ {Gb ,p++ // iN,At /WMa

'Eau}W ?w»'=–et€N&.
- 1/v7 hI 1 fe

f3}#tnaawç;:
- fC EII : (lvl 1)nAUa

q nyr€\
i&f:Re–,}}cs
CH4R l 1 tb yFGJ

-tióQCit{;;ef

-L / 1 AKÊb7 ttl'P=

Íi;–i;7mÍ=1\
FAma1

Fp L , & RÊÊb76 tl

gli-R
61 Nl

lvr
1 bT lqJ 'J ç (\\pIt \ 42 m,a.

{ kIo'\ IINda)

10 vT;–M
_-=W'-,1=-1/A(04

VeriA (J -_ix to
)oàg caf

{. ®ü aLf ,
_ #

GtA+a®N:

Fate(VGTc'L)\'P.fG
a+A-A 6..- o(: Ar\t'w

e) 4741–eu ;R =A/
' APe'1 LIZ3t ,Kwh meA,'

1 Be K 5Df)

b3ü e Yc«lfI to oc Me/'~
'oi 1l4 ,,fa p,q)G fCA IFít ak L;MIÍ'ei

n'’T’GI ae Act=Bahl,,ICI r\o Pç»eKN«ta3
p Z n/ F 3 /11r\ /1 J11 (f[]1hl= 18\PB ,fl R pf p4Cfh _ 3/+

latA 4»r>

1110 4,v(+ b,;\ LIM\?es

PeJ/(;e A/_c,Ah 1)6 43 f ,

- C 4\d 4 c\$1.3 f tft,/F»it+41

gIf P. 9 G,TW„.,leS il oe'Anc„-„ =
.ALgçqço(s G ZJ{3ehhÇoC-\ CM;
QuA 4<63" r\16 %1hed''\

kiM PW

ViE;À}.g(«) ,

\
B.ty\,_all u44ek@„

1

@:B
t)tqr*–p–=];JLl-l\
IIt_4 Jf :+M%A4aj

(ÇeeVF{,N}])

mq;–;eT;t:c–,a
, u_So, Cr LC a ~ R t)CJ4-,\.

. fv,vcc 65 »»[1$1/C4zut/fâÉÇ

.6 CC API+x' GtR€dd»A

T–-f\RL«jD
;Nlic;dog p(AN\M.

4 4 L d c (s 1 z ar B@) i

btüCc-s C

\1 +CâLLC:
TNlnãU 74 -df–z–é–Ra

• ao IF cn' '?,(48 d-y ? %A;:
Ê-é n CL cc
+ F-ea, „\t/VClaN 6 UDN Ctt>cl

–- pltN-l++c'’T q Aa-t–1–ts6

b FRee
4wA®:LacAK

-. lo.o fh,e(Ja;o#f)

I' '’:'.r–
- qToÜNA'(11 Ahh, ByTES Db

>––––I

L

	Ponteiros e Alocação Dinâmica de Vetores
	Introdução
	Ponteiros: Conceitos Básicos
	Declaração e Inicialização de Ponteiros
	Operadores de Ponteiros
	Aritmética de Ponteiros

	Ponteiros e Vetores
	Alocação Estática vs. Dinâmica
	Funções para Alocação Dinâmica de Memória
	Função sizeof

	Alocação Dinâmica de Vetores
	Exemplo completo de alocação dinâmica de vetor em C:

	Alocação Dinâmica de Matrizes
	Exemplo completo de alocação dinâmica de matriz em C:

	Problemas Comuns e Boas Práticas
	Boas práticas:

	Aplicações de Ponteiros e Alocação Dinâmica
	Conclusão
	Referências

