https://prettore.qithub.io/lectures.html

Ponteiros e Alocacao Dinamica de Vetores

11 o T 11 e T 20 OSSO 1
Ponteiros: CoNcCeitos BASICOS........cooiiiiiiiiiiiiiieieeeee e e e s e s e s e s s s s e e e e e s e s e e e e s s e s s s e s s e s e s s s s s s e nesnsea e s s s e s anssnnss s ssssssnnnnn 1
Declaragao e Inicializagao de PONEIr0S.oooviiiiiiiiie s 2
OPEradores AE PONTEIMOS.uuiiiiiiiiiiiiiieee ettt e et eeeaeesaeeaaaaaaanas 2
F N 1LY (Tez= e [T 0T o] (T 1 P 2
PONTEITOS © VBLOIES. et e e ettt e e e e e e e e et e ee b e e eeeaeeeeeestaaaaeeaeaeeeeesnsnnnnnes 3
PaY{oToz= Tor= o T =ty ¢= L1 Tor= IRV Z= T I 11 =1 o o= PP 3
Fungdes para Alocagao Din@mica de MEmMOIIaA.............uuuuuuuuuiiuiiiiiiiiiiiiiiierireerreeeeeerreeseee e eeeereeeeeeeeees 4
FUNGAOD SIZEOT ... et e e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeteaeeeeaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaes 4
P {oTor=Toz= ol BT g F= T g Toz= T LYY o] 4 =Y TP 4
Exemplo completo de alocagéo dindmica de vetor em Ci....ooooviiiiiiiiiiic 5
P oTez=Tor= Tl B T q b= Ta gl for= T [N Y = {2 SRR 6
Exemplo completo de alocagéo dindmica de matriz em Ci........oooiiiiiiiiiii e 6
Problemas Comuns € Boas PratiCas...........ccccieimmiiiiniiieiinn s sssssss s sssssss s s ssssssss s s sssssses 7
Lo = TSN o] =117 T 7
Aplicagoes de Ponteiros e Alocagao DINAMICA..........ccuviiiiiiiiiiiiiisisss e 7
00 o T3 11 1= Vo 20 SO 8
=Y =1 = Lo - = PPN 8
Introducao

Ponteiros e alocacdo dindmica de memadria sdo conceitos fundamentais na programacgao, especialmente em
linguagens como C e C++. Eles permitem um controle mais preciso sobre a memoéria do computador,
possibilitando a criacao de estruturas de dados flexiveis e eficientes. Este material explora os conceitos,
caracteristicas e aplicacbes de ponteiros e alocacao dindmica de vetores, fornecendo uma base solida para
sua utilizagdo em diferentes contextos de programacao.

Ponteiros: Conceitos Basicos

Um ponteiro € uma variavel cujo conteudo € um enderego de memoria. Enquanto variaveis comuns
armazenam valores de um determinado tipo (int, float, char, etc.), os ponteiros armazenam enderecos onde
esses valores estdo localizados na memoria do computador. Em outras palavras, um ponteiro "aponta" para
outra posi¢cao de memoaria.

A importancia dos ponteiros esta relacionada a varios aspectos:

1. Manipulagéo eficiente de grandes volumes de dados

2. Implementacao de estruturas de dados complexas

3. Comunicacéao entre funcbes através de parametros por referéncia

https://prettore.github.io/lectures.html

4. Alocagao dindmica de memodria
5. Acesso a hardware e recursos do sistema operacional

Declaracao e Inicializagao de Ponteiros

Para declarar um ponteiro em C, utiliza-se o operador asterisco (*) antes do nome da variavel. O tipo do
ponteiro deve corresponder ao tipo de dado para o qual ele apontara.

Sintaxe basica em C: Exemplos em C:

tipo *nome_do_ponteiro; int *pi; // Ponteiro para inteiro
char *pc; // Ponteiro para caractere
float *pf; // Ponteiro para float
double *pd; // Ponteiro para double

Um ponteiro recém-declarado ndo aponta para nenhum local valido na memoéria. E necessario inicializa-lo
antes de usa-lo, atribuindo a ele um enderego valido. Existem varias formas de inicializar um ponteiro:
e Atribuindo o enderego de uma variavel existente em C:
inta=10;
int *p = &a; // p recebe o endereco de a

e Atribuindo NULL (ponteiro nulo) em C:
int *p = NULL; // p ndo aponta para nenhum endereco valido

e Através de alocagao dindmica de memoria em C:
int *p = (int *) malloc(sizeof(int)); // Aloca espago para um inteiro

Operadores de Ponteiros

Existem dois operadores principais relacionados a ponteiros:
e Operador de enderego (&): Retorna o enderegco de meméria de uma variavel.
inta =10;
int *p = &a; // p recebe o endereco de a

e Operador de indirecao ou desreferenciagcao (*): Acessa o valor armazenado no endere¢o apontado
pelo ponteiro.
inta=10;
int *p = &a;
printf("%d", *p); // Imprime 10, o valor armazenado no enderego apontado por p

Aritmética de Ponteiros

A aritmética de ponteiros permite manipular enderegcos de memodria de forma controlada. As operacgodes
béasicas incluem:

e Incremento e decremento em C:
int *p = &array][0];
p++; // p agora aponta para array[1]
p--; // p volta a apontar para array[0]

e Adicdo e subtragdo de inteiros em C:
int *p = &array][0];
p = p + 3; // p agora aponta para array[3]
p =p - 2;// p agora aponta para array[1]

e Subtracdo de ponteiros em C:
int *p1 = &array[5];
int *p2 = &array[2];
int diff = p1 - p2; // diff = 3 (diferenga em numero de elementos)

E importante notar que a aritmética de ponteiros leva em consideragdo o tamanho do tipo de dado para o qual
0 ponteiro aponta. Por exemplo, se p € um ponteiro para int e cada int ocupa 4 bytes, p++ incrementara o
endereco em 4 bytes, ndo em 1.

Ponteiros e Vetores

Em C, existe uma relagdo muito forte entre ponteiros e vetores. Na verdade, o nome de um vetor é
essencialmente um ponteiro constante para o primeiro elemento do vetor.

int vetor[5] = {10, 20, 30, 40, 50};

int *p = vetor; // Equivalente a int *p = &vetor[0];

/I Acessando elementos do vetor usando ponteiro
printf("%d", *p); // Imprime 10 (vetor[0])
printf("%d", *(p+1)); // Imprime 20 (vetor[1])
printf("%d", *(p+2)); // Imprime 30 (vetor[2])

Esta relagdo permite duas notacdes equivalentes para acessar elementos de um vetor:
e Notagao de indice: vetor[i]
e Notacao de ponteiro: *(vetor + i) ou *(p + i)

Alocacao Estatica vs. Dinamica

Existem duas formas principais de alocar memaria para variaveis e estruturas de dados:
e Alocagéao Estatica:
- Ocorre em tempo de compilagao
- Tamanho fixo e predefinido
- Variaveis locais e globais sdo alocadas estaticamente
- Exemplo: “int vetor[100];
e Alocagao Dinamica:
- Ocorre em tempo de execucgao

- Tamanho pode ser determinado durante a execugéo do programa

- Requer uso de fungdes especificas (malloc, calloc, realloc, free)

- Exemplo: “int *vetor = (int *) malloc(n * sizeof(int));’
A alocacéo estatica tem a vantagem da simplicidade, mas pode desperdicar memoria se o tamanho maximo
necessario for superestimado, ou causar erros se for subestimado. A alocagdo dindmica permite um uso mais
eficiente da memodria, alocando exatamente o necessario quando necessario.

Funcdes para Alocacdo Dinamica de Memoria

Em C, existem quatro fungbes principais para gerenciamento de memodria dindmica, todas definidas na
biblioteca stdlib.h:
e malloc (memory allocation):
- Aloca um bloco contiguo de memdria do tamanho especificado
- Retorna um ponteiro void* para o inicio do bloco alocado
- N&o inicializa a memaria alocada
- Sintaxe: “void* malloc(size _t size);
e calloc (contiguous allocation):
- Aloca um bloco contiguo de memdéria para um array de elementos
- Inicializa todos os bytes com zero
- Sintaxe: "void* calloc(size_t num_elements, size_t element_size);’
e realloc (reallocation):
- Redimensiona um bloco de meméaria previamente alocado
- Preserva o conteudo original até o minimo entre o tamanho antigo e o novo
- Sintaxe: “void* realloc(void* ptr, size_t new_size);’
o free:
- Libera um bloco de memodria previamente alocado
- Sintaxe: “void free(void* ptr);’

Funcéo sizeof

A funcdo sizeof é um operador em C que retorna o tamanho em bytes de um tipo de dado ou variavel. E
frequentemente usado em conjunto com as fung¢des de alocagao dindmica para determinar o tamanho correto
a ser alocado.

e int *p = (int *) malloc(10 * sizeof(int)); // Aloca espago para 10 inteiros

O uso de sizeof torna o cédigo mais portavel, pois 0 tamanho dos tipos de dados pode variar entre diferentes
compiladores e plataformas.

Alocacao Dinamica de Vetores

Um vetor dindmico é um vetor cujo tamanho é determinado durante a execugdo do programa, ndo em tempo
de compilagao. Isso permite criar vetores do tamanho exato necessario, economizando memoaria.
Passos para alocar um vetor dinamicamente:

e Declarar um ponteiro do tipo desejado:
int *vetor;

e Determinar o numero de elementos (pode ser através de entrada do usuario):

int n;
printf("Digite o tamanho do vetor: ");
scanf("%d", &n);

e Alocar memoria usando malloc ou calloc:

vetor = (int *) malloc(n * sizeof(int));
/I ou
vetor = (int *) calloc(n, sizeof(int));

e \Verificar se a alocagéao foi bem-sucedida:

if (vetor == NULL) {
printf("Erro: Memoria insuficiente!");
exit(1);

}

e Usar o vetor normalmente:
for (inti=0;i<n;i++){
vetor[i] =i * 10;

}

e Liberar a memodria quando nao for mais necessaria:

free(vetor);

Exemplo completo de alocacao dindmica de vetor em C:

#include <stdio.h>
#include <stdlib.h>
int main() {

int *vetor;

intn, i

printf("Digite o tamanho do vetor: ");
scanf("%d", &n);

/I Alocagao dinamica
vetor = (int *) malloc(n * sizeof(int));

if (vetor == NULL) {
printf("Erro: Memoria insuficiente!");

/l Preenchendo o vetor
for(i=0;i<n;i++){
printf("Digite o valor para posigao %d: ", i+1);
scanf("%d", &vetorfi]);

}

// Exibindo o vetor

printf("Valores do vetor:");

for(i=0;i<n;i++){
printf("%d ", vetorfi]);

}

/I Liberando a meméria
free(vetor);

exit(1);

return O;

}

Alocacao Dinamica de Matrizes

A alocagao dinamica de matrizes € mais complexa que a de vetores, pois envolve multiplas dimensdes.

Existem varias abordagens para alocar matrizes dinamicamente:

e Alocagéao contigua (vetor linear):

int *matriz = (int *) malloc(linhas * colunas * sizeof(int)); // Acesso: matriz[i * colunas + j]

e Vetor de ponteiros (mais comum):
int **matriz = (int **) malloc(linhas * sizeof(int *));
for (inti=0;i<linhas; i++) {
matriz[i] = (int *) malloc(colunas * sizeof(int));
YI Acesso: matriz[i][j]

e Alocagao em bloco unico com vetor de ponteiros:

int **matriz = (int **) malloc(linhas * sizeof(int *));

int *dados = (int *) malloc(linhas * colunas * sizeof(int));

for (inti =0; i <linhas; i++) {
matriz[i] = &dados]i * colunas];
Y Acesso: matriz[i][j]

Exemplo completo de alocagédo dinamica de matriz em C:

#include <stdio.h>
#include <stdlib.h>
int main() {

int **matriz;

int linhas, colunas, i, j;

printf("Digite o numero de linhas: ");
scanf("%d", &linhas);

printf("Digite o numero de colunas: ");
scanf("%d", &colunas);

/I Alocagao dindmica da matriz
matriz = (int **) malloc(linhas * sizeof(int *));
if (matriz == NULL) {
printf("Erro: Memoria insuficiente!");
exit(1);
}

// Preenchendo a matriz
for (i = 0; i < linhas; i++) {
for (j = 0; j < colunas; j++) {
matriz[i][j] =i * colunas + j;
}
}

/I Exibindo a matriz

printf("Matriz:");

for (i = 0; i <linhas; i++) {
for (j = 0; j < colunas; j++) {

printf("%3d ", matriz[i][j]);
}
printf("
");
}

}

/I Liberando a memoria

for (i=0; i <linhas; i++) { for (i=0; i <linhas; i++) {
matriz[i] = (int *) malloc(colunas * sizeof(int)); free(matriz[i]);
if (matriz[i] == NULL) { }
printf("Erro: Memdria insuficiente!"); free(matriz);

exit(1);
return O;

Problemas Comuns e Boas Praticas

Vazamento de memoria (memory leak):
- Ocorre quando a memoaria alocada nao é liberada apds o uso
- Pode levar a consumo excessivo de memoaria e falhas no programa
- Solugdo: Sempre usar free() para liberar meméria alocada dinamicamente
Ponteiros pendentes (dangling pointers):
- Ponteiros que apontam para memodria ja liberada
- Acessar memoria através desses ponteiros causa comportamento indefinido
- Solugao: Atribuir NULL a ponteiros apos liberar sua meméria
Acesso fora dos limites:
- Acessar posicoes de memoria além do alocado
- Pode causar corrupgao de dados ou falhas no programa
- Solucéo: Verificar limites antes de acessar elementos
Fragmentacdo de memoria:
- Ocorre quando alocagdes e liberagdes frequentes criam "buracos" na meméria
- Pode levar a falhas de alocagdo mesmo com memodria total suficiente
- Solugao: Planejar alocacgdes para minimizar fragmentacao

Boas praticas:

Sempre verificar se a alocagao foi bem-sucedida antes de usar o ponteiro

Liberar toda memoaria alocada quando nao for mais necessaria

Atribuir NULL a ponteiros apés liberar sua memoaria

Usar fungdes auxiliares para encapsular alocacao e liberacédo de estruturas complexas
Considerar o uso de ferramentas de detecgdo de vazamento de memaria (como Valgrind)

Aplicacoes de Ponteiros e Alocacao Dinamica

Estruturas de dados dindmicas:
- Listas encadeadas
- Arvores

- Grafos
- Tabelas hash
e Manipulagéo de strings:
- Concatenacao
- Cépia
- Comparacéo
e Passagem de parametros por referéncia:
- Permitindo que fungdes modifiquem variaveis originais
e Implementacado de arrays multidimensionais:
- Matrizes
- Tensores
e Gerenciamento eficiente de recursos:
- Carregamento sob demanda
- Cache de dados

Conclusao

Ponteiros e alocagao dindmica de memoria sdo ferramentas poderosas que permitem aos programadores um
controle preciso sobre a memoaria do computador. Eles sao fundamentais para a implementacao de estruturas
de dados eficientes e flexiveis, bem como para o desenvolvimento de software que utiliza recursos de forma

otimizada.

Embora o uso de ponteiros e alocacdo dinamica introduza complexidade adicional e potenciais problemas
como vazamentos de memoéria, o dominio desses conceitos é essencial para programadores que desejam
criar software eficiente e robusto, especialmente em linguagens como C e C++.
Com a pratica e a atengao as boas praticas de programacgao, é possivel aproveitar o poder dos ponteiros e da
alocacdo dindmica enquanto se evita as armadilhas comuns associadas a eles.

Referéncias

e | _|Livros e Apostilas

o

O
@)
O

CORMEN, T. H. Introduction to Algorithms. MIT Press.

GOODRICH, M. Data Structures and Algorithms in Python.

Tenenbaum, A. M. Estruturas de Dados e Algoritmos em C

P. Feofiloff. Algoritmos em Linguagem C. Campus-Elsevier, 1a. edi¢do, 2009 H. M. Deitel, P. J.
Deitel. C - Como Programar, 6a. edigdo, Pearson Education, 2011.

B. W. Kernighan, D. M. Ritchie. The C Programming Language, 2a. edi¢gao, Prentice-Hall, 1988
[Tradugao: C - A Linguagem de Programacéao. Editora Campus, 1989].

J. L. Szwarcfiter, L. Markenzon. Estruturas de Dados e seus Algoritmos, 3a. edi¢cdo, Editora
LTC, 2010.

W. Celes, R. Cerqueira, J.L. Rangel. Introducdo a Estruturas de Dados, 1a. edigido, Editora
Campus, 2004.

N. Ziviani. Projeto de Algoritmos com Implementagdes em Pascal e C, 3a. edicdo, Editora
Cengage Learning, 2011.

o T. Cormen, C. Leiserson, R. Rivest, C. Stein. Algoritmos - Teoria e Pratica, 3a. edi¢do, Editora
Campus, 2012.
o R. Sedgewick, K. Wayne. Algorithms, 4a. edigdo, Addison -Wesley, 2011.
o A. Kelley, I. Pohl. A Book on C, 4a. edigdo, Addison Wesley, 1998.
e & Recursos Online

o Alocagao Dinamica em C - Linguagem C -
https://linguagemc.com.br/alocacao-dinamica-de-memoria-em-c/

o Ponteiros e Vetores / Alocacéao Dindmica - Cin UFPE -
https://www.cin.ufpe.br/~if669ec/aulas/aulalP-PonteirosVetores.pdf

o Alocagao Dinamica de Vetores e Matrizes - Curso de C -
http://mtm.ufsc.br/~azer r I 70.html

o Ponteiros - Programacao em C/C++ -

https://www.inf.pucrs.br/~pinho/PRGSWB/Ponteiros/ponteiros.html
o GeeksforGeeks - Dynamic Memory Allocation in C
o Tutorialspoint - C - Pointers
e %% Videos e Cursos
o Curso em Video - Ponteiros em C
o Programacao de Computadores - Alocagédo Dinamica - UFOP
o Khan Academy - Introduc¢do a Programacéo: Ponteiros

Isencéo de Responsabilidade:

Os autores deste documento n&o reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagéo dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagées contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteudo aqui apresentado.

https://linguagemc.com.br/alocacao-dinamica-de-memoria-em-c/
https://www.cin.ufpe.br/~if669ec/aulas/aulaIP-PonteirosVetores.pdf
http://mtm.ufsc.br/~azeredo/cursoC/aulas/ca70.html
https://www.inf.pucrs.br/~pinho/PRGSWB/Ponteiros/ponteiros.html

{)
Ivoine ,.C/;w pes fepehert |

- Acesip O vated A
MO Ev o ApinTptd

) |) (Eercrat€ gan_ _S—————— |
l ANIPY LA (AY [F En. ol
— i ‘ yRAvPES VALY MEK) :] __— ‘
— U 0500/ L OanPrexRd

OQ MEM, QUE p(fwfn
TP/ 0vTna ISicad O¢ MEM.)
“ ' A Comipt . €nTne)

— an o0& el
‘ U{;&e’mdf\//\ 0 EnDs D6
. /\M'V\ DE Yatniky

vcuﬁlﬁ‘c?ﬁec\é””"wﬂi Un LORY Poft R,CF&M, ol |
o —‘D>°4°{9’0A Me‘ ';_ e N B B ALGC &t[’;&’ '0]‘/\[“7~T 4 ‘_74 N o o) ‘7' o S “’
GESTY\VT“R“ 05 ’ [!\’\(‘N\‘ I/t/]c |N‘Zﬁcm
a OAN;FWN&;\ B - Vv ""l]’félf(':’,"’c]}b:b{dm;‘ |
| ‘ ’
? . —— D.qcmmgao_s__., ‘:::5‘ NULL
: MAN\\(S\}:F B T ‘ *— INiC\AL\ZALm j (A& owwwme
|2 0 Y An f dOv1cinos € Aocacao X7 T——— = AT~
- DinvAMICa DE NeTORES 5 4 INT*pP= LA
- mi{;_"ﬁ — —— " YAkt \ Y INT*0= 00,
L‘ ¥ - CinvBmis 3) 17 X aue
B (0] Tl YT P I— S 130 Xp = (1arr e
1) 1 (SZWF(IN?})
- (\M“' ‘*f & &“‘“YLQ\J) B, umie sl

¥ |C*’¥>v 0,(Ext (.u(@ﬂ .
B PRI 7T . 06 MM
s FunCees maLbac[c sueslfase
 Comphéne Genencing,

l
B MC’_A‘&&J.&;‘&.M#MkHW == f(-gl'!.iwgﬁfk‘ﬁr, USSR AL,,s Tq_j —

s 044 'I/ Apovta AnasyLil ToMmandS 0y ‘Lw".ﬂ')&j .L) Dcciann 070
11 |Tips O¢ 0AON | Aavors | L~ pa—ponTeikg |

|l ®-=l angayte]

~ ~G 2 3 ’
YA O+ [fincat angas . ‘\A:ng -IVT ¥ JeTon
— 1= 'Ph—}—[’l—pj&&}’j‘l*—ﬂ --------- GEpO—C~<— —H——1 if) N TELEAN.
= P,}-—L) Avasy [4] quTe& =N V= ‘ﬁtvu) Cwﬂ(,oos D€ Mire,
— — . I

— YA AN

- (ENT’ .ymuw(yzd' 13}4(3)
JCALLEL | 78
< L VICOAL i‘Z“Lj Cf ZcRhAU

- A UM
/| voidt Lnu«}\,(pu. e, G

V(LA ol i
= (LD MENTEN R U BLOCU
—PIREVIFMENTE ALeCADS
¢ Eree ’

e LtAGAD iprace 06 Mem

k SST}TV\H(&.;:Q D& pONYG\ﬁQ': i’\‘:: "L{S,,e) -V(\~rc-'l=(w1’|)mAuo‘;
L civi fpr=Rananple) |\ | M- dbyrg ¥ L e —

€0 . -) 9%(}- %D
(L%) fp = X, Ann Y o
) 2! " Cl])f" ’) \/(l\lt WA [;u»rpi).
“\F(\K‘W-\ =T

Las e pl-p2 XN ZF WAt~ Dpyrs [

45)%4@5 |
=z .e,/ AC W A)

7 7 ' VETALi]=Ax)0 - Voip f" 63(\/“‘0“('))
- AV fffffff — "**J’QL%(neMAGw «SIZ6 \)F ——
i) Vﬁ?..mv\ 6«/\ 0(J\/\(:'V\ - Fﬂk(’(vtf\a"«) o a&TOV\NA v TA~A (‘))/rﬂ 0o

E—— _M_ém_/iLOxAD N N e

Lidewngny

APeA L) fenan mem)

TVl J -) -)
- ‘T"“’:«:’S? gfz: i ”3')VEﬂ‘i"T'c‘Sa“i;,?RirJ 1
AUTES 0€ AcElan, |
Pt)ﬂ(mc Pcﬂpcwr(WA | 7 - . L B
- | TRevn ps e am t') PLANE Fpn A ALeiKE %
LiBtnapy - I
| 3)'H'(;—(~IS€",E€§J"6;TE"!XBJ‘\%§ ;
i Pch(/»e ALea O8 BMoced - B R .
S - ~l(_.9\l$ﬁ L\\M“Flﬁ‘ﬁ/ﬁumi *
_____ q}F”ﬁb%ﬂ.ocm e Muv\ - o - ——
ALocm;oes ¢ Lmem«;o@\ “w,% 1
... GW\’KOS“ ~NA N\(h@(\‘q L o S o o S e
|
‘!‘ - I S - S I
= U A

	Ponteiros e Alocação Dinâmica de Vetores
	Introdução
	Ponteiros: Conceitos Básicos
	Declaração e Inicialização de Ponteiros
	Operadores de Ponteiros
	Aritmética de Ponteiros

	Ponteiros e Vetores
	Alocação Estática vs. Dinâmica
	Funções para Alocação Dinâmica de Memória
	Função sizeof

	Alocação Dinâmica de Vetores
	Exemplo completo de alocação dinâmica de vetor em C:

	Alocação Dinâmica de Matrizes
	Exemplo completo de alocação dinâmica de matriz em C:

	Problemas Comuns e Boas Práticas
	Boas práticas:

	Aplicações de Ponteiros e Alocação Dinâmica
	Conclusão
	Referências

