Algoritmos de Ordenacao

11 o T 11 e T 20 OSSO 1
L0070 [o-T) LT = 7 T 1o o L0 LT @ T o [T 4 - ¥ o- T N, 2
Classificagao dos Algoritmos de Ordenagao..........ccccuerrriiiiiiiissemrrrriisssr s nann e 2
Algoritmos de Ordenagao EIementares..........cccvviiiiiiiiiiiiiiiss s ssssss s s s s 2
1. Bubble Sort (Ordenagao por BOINA)...........oooooiiiiii 2
2. Selection Sort (Ordenagao POI SEIEGA0).......cciuuriiiiiee e et e e ee e e e e e e e e e e e e e e e snnseeeeeeeeaeaannsseeeeaens 3
R I E1=Tu o] g ISTo (@40 [T gF=Tor= To TN oo dl [g TST=T oz Lo) U 4
Algoritmos de Ordenagao Eficientes..........ccovimmiiiiiiiiiieeiini s 4
1. Merge Sort (Ordenagao por INtErCAIAGAD)........uuuiiiiiiiiiiiiiie ettt a e aae e 4
A @ [¥{To1 (@S To T (@] o [T o F=Toz= To T 2= o]l £-) ISR 5
T o (=T=T oIS Yol o A (@ o [=T o =Toz= T 2 o To]l L= =T o) O 6
Algoritmos de Ordenacdo Nao Baseados em COMPAraGao..........ccuvvummrrrrmiissssssssnsssissssssssssssssssssssssssssssssssnns 7
1. Counting Sort (Ordenagao POr CONTAGEIM).......ouiiiiiiiiiiiiie et e e e e e e e e s e e eeeeeeaaans 7
2. Radix Sort (Ordenacgao POr RAIZ)........ccooviiiiiiiiieeeee e ———— 8
3. Bucket Sort (Ordenaga@o por Balde)...........eeiiiiiiiiiiiiieeeeeeeeeeeeee e, 9
Comparacgao entre Algoritmos de OrdeNagGao..........cccuviiiiiiiiiiiiriiiri e 10
Aplicagoes dos Algoritmos de OrdenNagGao..........ccccuurrrriimrrrrirniiiiiissrr s n e 10
Boas Praticas na Implementacao de Algoritmos de Ordenagao...........cccccovvrrriinernrrrnnnnssssssse s 1"
(0] 0o (=Y B Toz Lol=Y o g L=Y o g Tod g F= TR T o UL Lo F- T - 1"
EXEINAl SOMING. ..ot ———————————————————————————— 11
MEIGE SOOIt EXEEINO. ...ttt et e ettt e e e e e e b e e e e e e e e e e b e e et e e e e e e annnnnneeeeeas 11
L0 o 4 e 11 T3 Vo PR 1"
[T = (=1 ¢ Lo - 12
Anexo - Resumo Estruturado/Mapa Mental Gerado por lA............coo oo iriiirrrrcrrrrcrrrr s snnnnns 13
Introducao

Os algoritmos de ordenacao sao fundamentais na ciéncia da computacéo e tém como objetivo rearranjar os
elementos de uma estrutura de dados (geralmente um vetor ou lista) em uma determinada ordem, que pode
ser crescente, decrescente ou seguindo algum outro critério especifico. Esses algoritmos sdo amplamente
utilizados em diversas aplicacbes, desde sistemas de banco de dados até interfaces de usuario, e constituem
uma base importante para outros algoritmos mais complexos.

Este material apresenta os principais algoritmos de ordenacado, suas caracteristicas, implementacoes,
analises de complexidade e aplicagdes. Compreender esses algoritmos € essencial para qualquer profissional
da area de computacao, pois eles ilustram conceitos fundamentais de eficiéncia algoritmica e técnicas de
programacao.

https://prettore.github.io/lectures.html

Conceitos Basicos de Ordenacao

A ordenagdo é a operacao de rearranjar os dados em uma determinada ordem. Formalmente, dado um
conjunto de n elementos {as, a., ..., al}, 0 objetivo é encontrar uma permutagéo (reordenagéo) {a',, a", ..., a'l'}
talqueai<=a% <..<a'll.

Alguns conceitos importantes relacionados a ordenagéo incluem:

1. Estabilidade: Um algoritmo de ordenagao € estavel quando mantém a ordem relativa de elementos iguais.
Isso significa que se dois elementos tém o mesmo valor e um aparece antes do outro no vetor original, apds a
ordenacgao, o elemento que estava originalmente antes continuara antes.

2. In-place: Um algoritmo ¢é considerado in-place quando requer apenas uma quantidade constante de espaco
adicional para realizar a ordenacgdo, ou seja, ele modifica diretamente a estrutura de dados original sem
necessitar de estruturas auxiliares proporcionais ao tamanho da entrada.

3. Adaptabilidade: Um algoritmo é adaptativo quando seu desempenho melhora quando os dados ja estao
parcialmente ordenados.

4. Comparagdes: A maioria dos algoritmos de ordenagao baseia-se em comparacdes entre elementos. Alguns
algoritmos, no entanto, utilizam outras propriedades dos dados para realizar a ordenagéo.

Classificacao dos Algoritmos de Ordenacao

Os algoritmos de ordenagao podem ser classificados de varias formas:

1. Baseados em comparagao:

- Selection Sort

- Bubble Sort

- Insertion Sort

- Merge Sort

- Quick Sort

- Heap Sort

- Shell Sort

2. Nao baseados em comparacgao:
- Counting Sort
- Radix Sort
- Bucket Sort
- Pigeonhole Sort

3. Algoritmos hibridos:

- Tim Sort (combinacao de
Insertion Sort e Merge Sort)

- Intro Sort (combinacao de
Quick Sort, Heap Sort e Insertion
Sort)

Algoritmos de Ordenacao Elementares

1. Bubble Sort (Ordenacéao por Bolha)

O Bubble Sort é um dos algoritmos de ordenacdo mais simples. Ele funciona comparando pares de elementos
adjacentes e trocando-os se estiverem na ordem errada. Este processo é repetido até que nenhuma troca
seja necessaria, indicando que o vetor esta ordenado.

Implementagédo em C:

void bubbleSort(int arr], int n) {

for (inti=0;i<n-1;i++){
for (intj = 0;j < n-i-1; j++) {
if (arrfj] > arr[j+1]) {
/I Troca arr[j] e arr[j+1]
int temp = arr[j];
arrfj] = arr[j+1];
arr[j+1] = temp;

Complexidade:

- Tempo: O(n?) no pior e caso médio, O(n) no melhor caso (quando o vetor ja esta ordenado)
- Espaco: O(1)

Caracteristicas:

- Estavel

- In-place

- Simples de implementar

- Ineficiente para grandes conjuntos de dados

2. Selection Sort (Ordenacao por Sele¢ao)

O Selection Sort funciona selecionando repetidamente o menor (ou maior) elemento da parte nao ordenada
do vetor e movendo-o para a parte ordenada.

Implementagédo em C:

void selectionSort(int arr[], int n) {
for (inti=0;i<n-1;i++){
int min_idx =1i;
for (intj=i+1;j<n; j++) {
if (arr[j] < arr[min_idx])
min_idx = j;
}
/l Troca o elemento minimo encontrado com o primeiro elemento
int temp = arr[min_idx];
arr[min_idx] = arrfi];
arr[i] = temp;

Complexidade:
- Tempo: O(n?) em todos os casos
- Espaco: O(1)

Caracteristicas:

- Nao estavel (pode ser implementado de forma estavel com custo adicional)
- In-place

- Simples de implementar

- Faz menos trocas que o Bubble Sort

3. Insertion Sort (Ordenacéao por Insercao)

O Insertion Sort constréi a sequéncia ordenada um elemento por vez, inserindo cada novo elemento na
posicao correta entre os elementos ja ordenados.

Implementagédo em C:

void insertionSort(int arr], int n) {
for (inti=1;i<n;i++){
int key = arrfi];
intj=i-1;

/l Move os elementos de arr[0..i-1] que sdo maiores que key
/l para uma posigao a frente de sua posigao atual
while (j >= 0 && arr{j] > key) {
arr[j + 1] = arr[j];
i=i-1
}
arr[j + 1] = key;

Complexidade:

- Tempo: O(n?) no pior e caso médio, O(n) no melhor caso (quando o vetor ja esta ordenado)
- Espacgo: O(1)

Caracteristicas:

- Estavel

- In-place

- Eficiente para pequenos conjuntos de dados

- Adaptativo (eficiente para dados parcialmente ordenados)

- Usado como parte de algoritmos mais complexos como o Shell Sort e o Tim Sort

Algoritmos de Ordenacao Eficientes

1. Merge Sort (Ordenacgao por Intercalagao)

O Merge Sort € um algoritmo baseado na técnica de divisdo e conquista. Ele divide o vetor em duas metades,
ordena cada metade recursivamente e depois mescla as duas metades ordenadas.

Implementagédo em C:

/I Fungao para mesclar duas subpartes ordenadas
void merge(int arrf], int |, int m, intr) {

inti, j, k;
intn1T=m-1+1;
intn2=r-m;

/I Cria arrays temporarios
int L[n1], R[n2];

/I Copia dados para arrays temporarios
for (i=0;i<n1;i++)

L[i] = arr[l +i];
for (j = 0;j < n2; j++)

R[] = arr[m + 1 +];

/I Mescla os arrays temporarios de volta em arr]l..r]
i=0;
i=0;
k=1
while (i <n1 &&j<n2){
if (L[i] <= RO {
arr[k] = L[i];
i++;
}else {
arrk] = R[J;
s
}

k++;

}

/I Copia os elementos restantes de L[], se houver

while (i< n1){
arrfk] = L[i];
i++;
k++;

}

/I Copia os elementos restantes de R[], se houver

while (j < n2) {
arr[k] = R[;
j*+
k++;

}

}
/I Fungao principal do Merge Sort

void mergeSort(int arrf], int I, int r) {
if (I<r){
intm =1+ (r-1)/2;// Ponto médio

// Ordena primeira e segunda metades
mergeSort(arr, |, m);
mergeSort(arr, m + 1, r);

/l Mescla as metades ordenadas
merge(arr, I, m, r);

Complexidade:

- Tempo: O(n log n) em todos os casos

- Espacgo: O(n)

Caracteristicas:

- Estavel

- Nao in-place (requer espaco adicional)

- Eficiente para grandes conjuntos de dados
- Previsivel (sempre O(n log n))

2. Quick Sort (Ordenacdo Rapida)

O Quick Sort também utiliza a técnica de divisdao e conquista. Ele seleciona um elemento como pivo e
particiona o vetor ao redor do pivd, de modo que elementos menores figuem a esquerda e elementos maiores
a direita. Em seguida, ordena recursivamente as duas partigdes.

Implementagédo em C:

/I Fungao para trocar dois elementos
void swap(int* a, int* b) {

intt="a;

*a = *b’

*b=t;
}
/I Funcgao de particionamento
int partition(int arrf], int low, int high) {

int pivot = arr[high]; // Pivo

inti = (low - 1); // indice do menor elemento

for (intj = low; j <= high - 1; j++) {
// Se o elemento atual € menor ou igual ao pivd
if (arr[j] <= pivot) {
i++; // Incrementa o indice do menor elemento
swap(&arrfi], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
/I Funcao principal do Quick Sort
void quickSort(int arr(], int low, int high) {
if (low < high) {
// pi é o indice de particionamento
int pi = partition(arr, low, high);

// Ordena elementos antes e depois da particdo
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

Complexidade:

- Tempo: O(n?) no pior caso, O(n log n) no caso médio e melhor caso

- Espacgo: O(log n) devido a pilha de recursao
Caracteristicas:

- Nao estavel (pode ser implementado de forma estavel com custo adicional)

- In-place

- Geralmente mais rapido na pratica que outros algoritmos O(n log n)

- Sensivel a escolha do pivd

3. Heap Sort (Ordenacéao por Heap)

O Heap Sort utiliza uma estrutura de dados chamada heap (geralmente um heap maximo) para ordenar os
elementos. Ele constréi um heap a partir do vetor e, em seguida, extrai repetidamente o elemento maximo,

reconstruindo o heap apés cada extragao.

Implementagédo em C:

/I Fungédo para ajustar um subarvore com raiz em i
void heapify(int arr[], int n, int i) {
int largest = i; // Inicializa o maior como raiz
intl=2*i+1;// Esquerda = 2*i + 1
intr=2*i+2;//Direita=2%+ 2

/I Se o filho da esquerda & maior que a raiz

/I Fungao principal do Heap Sort
void heapSort(int arr[], int n) {
/I Constroi o heap (rearranjo do array)
for(inti=n/2-1;i>=0;i-)
heapify(arr, n, i);

/l Extrai um por um elemento do heap
for (inti=n-1;i>0;i-){
// Move a raiz atual para o fim

if (I < n && arr[l] > arr[largest]) swap(&arr[0], &arrfi]);
largest = ;
// Chama max heapify no heap reduzido
/I Se o filho da direita € maior que o maior até agora heapify(arr, i, 0);
if (r < n && arr[r] > arr[largest]) }
largest=r; }

/l Se o maior ndo é a raiz
if (largest I=1) {
swap(&arr[i], &arrflargest));

/l Recursivamente heapify a subarvore afetada
heapify(arr, n, largest);
}
}

Complexidade:

- Tempo: O(n log n) em todos os casos

- Espaco: O(1)

Caracteristicas:

- N&o estavel

- In-place

- Eficiente para grandes conjuntos de dados
- Previsivel (sempre O(n log n))

Algoritmos de Ordenacao Nao Baseados em Comparacao

1. Counting Sort (Ordenacao por Contagem)

O Counting Sort é um algoritmo que funciona contando o nimero de ocorréncias de cada elemento e usando
essa informacdo para posicionar os elementos na sequéncia ordenada. E eficiente quando o intervalo de
valores possiveis nao é significativamente maior que o numero de elementos a serem ordenados.

Implementagédo em C:

void countingSort(int arrf], int n, int max) {
int output[n]; // Array de saida
int count[max + 1]; // Array de contagem

/I Inicializa o array de contagem
for (inti = 0; i <= max; ++i)
count[i] = 0;

/l Armazena a contagem de cada elemento
for (inti=0;i<n; ++i)

count[arr[i]]++;

/I Altera count][i] para que contenha a posic¢ao atual do elemento i no array de saida
for (inti = 1; i <= max; ++i)
count[i] += count[i - 1];

/I Constroéi o array de saida

for (inti=n-1;i>=0; i) {
output[count[arr[i]] - 1] = arr]i];
count[arr][i]]--;

}

/I Copia o array de saida para arr[]
for (inti=0;i<n; ++i)
arr[i] = output]i];

Complexidade:

- Tempo: O(n + k), onde k € o intervalo de valores

- Espaco: O(n + k)

Caracteristicas:

- Estavel

- Nao in-place

- Eficiente quando o intervalo de valores é pequeno
- Nao baseado em comparacgdes

2. Radix Sort (Ordenacao por Raiz)

O Radix Sort ordena os elementos processando-os digito por digito. Ele pode ser implementado usando
qualquer algoritmo de ordenagéo estavel como sub-rotina, mas geralmente usa o Counting Sort.

Implementagédo em C: I/ Constréi o array de saida
for(inti=n-1;i>=0;i-){
/l Fungéo para encontrar o maior nimero no array output[count[(arr[i] / exp) % 10] - 1] = arr|i];
int getMax(int arr], int n) { count[(arr(i] / exp) % 10]-;
int max = arr[0]; }
for (inti=1;i<n;i++)
if (arrfi] > max) /I Copia o array de saida para arr[]
max = arrli]; for (inti=0;i<n;i+t+)
return max; arrfi] = output[i];
} }
/I Fungéo para fazer o counting sort do array de acordo |/ Funcgéo principal do Radix Sort
com o digito representado por exp void radixSort(int arr[], int n) {
void countSort(int arrf], int n, int exp) { /I Encontra o nUmero maximo para saber o nimero de
int output[n]; // Array de saida digitos
int count[10] = {0}; int m = getMax(arr, n);

/I Armazena a contagem de ocorréncias em count[] /I Faz o counting sort para cada digito
for (inti=0;i<n;it+) for (intexp =1; m/exp > 0; exp *= 10)
count[(arr[i] / exp) % 10]++; countSort(arr, n, exp);
}

/I Altera count[i] para que contenha a posicao atual do
digito no output[]
for (inti=1;i<10; i++)
count[i] += count][i - 1];

Complexidade:

- Tempo: O(d * (n + k)), onde d é o numero de digitos e k é o intervalo de valores por digito
- Espaco: O(n + k)

Caracteristicas:

- Estavel

- Nao in-place

- Eficiente para numeros com poucos digitos

- Nao baseado em comparagdes

3. Bucket Sort (Ordenacao por Balde)

O Bucket Sort divide o intervalo de valores em um numero de baldes, distribui os elementos nos baldes
apropriados, ordena cada balde individualmente (geralmente com outro algoritmo de ordenagio) e, em
seguida, concatena os baldes.

Implementagdo em C (simplificada para niumeros entre 0 | // Ordena cada balde e coloca de volta no array
e1): int index = 0;
for (inti=0;i<n;i++){
void bucketSort(float arr{], int n) { // Ordena o balde (pode usar insertion sort)
// Cria n baldes vazios buckets[i] = insertionSortList(buckets]i]);
struct Node* buckets[n];
for (inti=0;i<n;i++) // Coloca os elementos do balde de volta no array
buckets[i] = NULL,; struct Node* current = buckets]i];
while (current 1= NULL) {
/I Coloca elementos do array nos baldes arr[index++] = current->data;
for (inti=0;i<n;i++){ current = current->next;
int bucketindex = n * arr{i]; // indice do balde }
// Insere no inicio da lista do balde }
struct Node* current = createNode(arr[i]); }
current->next = buckets[bucketindex];
buckets[bucketindex] = current;
}

Complexidade:
- Tempo: O(n?) no pior caso, O(n + k) no caso médio (onde k é o numero de baldes)
- Espacgo: O(n + k)

Caracteristicas:

- Estavel (dependendo do algoritmo usado para ordenar os baldes)

- Nao in-place

- Eficiente para distribuicoes uniformes

- Pode usar diferentes algoritmos para ordenar cada balde

Comparacao entre Algoritmos de Ordenacao

10

A escolha do algoritmo de ordenacgédo adequado depende de varios fatores, como o tamanho dos dados, a
distribuicdo dos valores, a estabilidade necessaria e as restrigdbes de memdria. A tabela a seguir resume as
caracteristicas dos principais algoritmos:

Algoritmo Melhor Caso | Caso Médio | Pior Caso Espagco | Estavel | In-place
Bubble Sort O(n) O(n?) O(n?) o(1) Sim Sim
Selection Sort | O(n?) O(n?) O(n?) o(1) Nao Sim
Insertion Sort O(n) O(n?) O(n?) o(1) Sim Sim
Merge Sort O(n log n) O(n log n) O(n log n) O(n) Sim Nao
Quick Sort O(nlog n) O(n log n) O(n?) O(log n) | Nao Sim
Heap Sort O(n log n) O(n log n) O(n log n) o(1) Nao Sim
Counting Sort | O(n + k) O(n + k) O(n + k) O(n+k) | Sim Nao
Radix Sort O(d(n + k)) O(d(n + k)) O(d(n + k)) O(n +k) | Sim Néo
Bucket Sort O(n + k) O(n + k) O(n?) O(n+k) | Sim Nao

Aplicacoes dos Algoritmos de Ordenacao

Os algoritmos de ordenacao tém inumeras aplicacbes em diversas areas da computacao:

1. Bancos de dados: Para indexacgao e consultas eficientes.

2. Processamento de texto: Para ordenar palavras alfabeticamente.
3. Computacao grafica: Para ordenar objetos por profundidade (z-buffer).

4. Compresséao de dados: Alguns algoritmos de compressao usam ordenagdo como pre-processamento.

5. Analise de dados: Para facilitar a busca e visualizacao de informacoes.
6. Sistemas operacionais: Para gerenciamento de processos e recursos.
7. Redes de computadores: Para roteamento e gerenciamento de pacotes.

11

Boas Praticas na Implementacao de Algoritmos de
Ordenacao

1. Escolha o algoritmo adequado para o problema especifico, considerando o tamanho dos dados, a
distribuigdo dos valores e as restricbes de memoria.

2. Para pequenos conjuntos de dados (n < 50), algoritmos simples como Insertion Sort podem ser mais
eficientes devido a baixa sobrecarga.

3. Para grandes conjuntos de dados, prefira algoritmos com complexidade O(n log n) como Merge Sort, Quick
Sort ou Heap Sort.

4. Se a estabilidade for importante, escolha algoritmos estaveis como Merge Sort ou Insertion Sort.

5. Se o espaco for uma restricao, prefira algoritmos in-place como Quick Sort ou Heap Sort.

6. Para dados com intervalo limitado, considere algoritmos ndo baseados em comparagao como Counting Sort
ou Radix Sort.

7. Implemente otimizagdes especificas para o seu caso de uso, como a escolha do pivé no Quick Sort ou o
tamanho dos baldes no Bucket Sort.

Ordenacdo em Memodria Secundaria

Quando os dados sdo muito grandes para caber na memdéria RAM, é necessario utilizar técnicas de
ordenagdo em memoria secundaria, como discos rigidos ou SSDs.

External Sorting

O External Sorting permite ordenar grandes volumes de dados dividindo-os em blocos menores, que sao
ordenados separadamente na memoria primaria e depois combinados de forma eficiente.

Merge Sort Externo

O Merge Sort Externo é uma variagao do Merge Sort adaptada para dados armazenados em disco. Ele divide
o conjunto de dados em partes que cabem na memoria, ordena essas partes e as mescla progressivamente.
Exemplo: Suponha que temos 10 GB de dados para ordenar e apenas 1 GB de memdéria disponivel. O Merge
Sort Externo divide os dados em 10 blocos de 1 GB, ordena cada um na memaria e depois mescla os blocos
em uma Unica sequéncia ordenada.

Aplicacédo: Usado em bancos de dados, sistemas de arquivos e grandes data centers, onde a ordenagao
precisa ser feita em discos rigidos devido ao tamanho dos dados.

Conclusao

Os algoritmos de ordenacao sao ferramentas fundamentais na ciéncia da computacdo, com aplicagdes em
praticamente todas as areas que envolvem processamento de dados. Compreender as caracteristicas,
vantagens e limitagdes de cada algoritmo permite escolher a solugdo mais adequada para cada problema
especifico.

12

Embora existam algoritmos com complexidade tedrica 6tima de O(n log n) para ordenacdo baseada em
comparagodes, nao existe um "melhor" algoritmo universal. A escolha depende das caracteristicas dos dados e
dos requisitos especificos da aplicagao.

O estudo dos algoritmos de ordenagédo também fornece insights valiosos sobre técnicas de projeto de
algoritmos, como divisdo e conquista, uso de estruturas de dados auxiliares e analise de complexidade, que
sdo aplicaveis a uma ampla gama de problemas computacionais.

Referéncias

e | _|Livros e Apostilas
o CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms. MIT
Press.
SEDGEWICK, R.; WAYNE, K. Algorithms. Addison-Wesley Professional.
KNUTH, D. E. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley.
o COELHO, H.; FELIX, N. Métodos de Ordenacdo: Selection, Insertion, Bubble, Merge (Sort).
UFG.
o MENEZES, P. B. Matematica Discreta para Computacao e Informatica. Bookman.
e) Recursos Online
o GeeksforGeeks - Sorting Algorithms - https://www.geeksforgeeks.ora/sorting-algorithms/
o VisuAlgo - Sorting - https://visualgo.net/en/sorting
o IME-USP - Corregdo e desempenho de algoritmos basicos de ordenacdo -
https://www.ime.usp.br/~pf/algoritmos/aulas/ordena.html
o Khan Academy - Algoritmos de Ordenacgao
o Sorting Algorithms Animations - https://www.toptal.com/developers/sorting-algorithms
e %% Videos e Cursos
o 15 Sorting Algorithms in 6 Minutes - https://www.youtube.com/watch?v=kPRAOW1kECqg
o @ Algoritmo SELECTION SORT | Algoritmos de Ordenacéo | Algoritmos #3

Isencao de Responsabilidade:

Os autores deste documento n&o reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagéo dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteudo aqui apresentado.

https://www.youtube.com/watch?v=ZT_dT8yn48s
https://www.geeksforgeeks.org/sorting-algorithms/
https://visualgo.net/en/sorting
https://www.ime.usp.br/~pf/algoritmos/aulas/ordena.html
https://www.youtube.com/watch?v=kPRA0W1kECg

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

& Introducdo

e Reorganizagao de elementos em uma ordem definida (crescente, decrescente, etc.)
e Base para outros algoritmos complexos
e Usados em: bancos de dados, sistemas operacionais, analise de dados, interfaces de usuario

13

+~ Conceitos Basicos

Estabilidade — mantém ordem relativa de elementos iguais

In-place — usa pouca memoria extra

Adaptabilidade — desempenho melhora em dados parcialmente ordenados
Comparagées — maioria dos algoritmos depende de comparagdes

= Classificagéo dos Algoritmos

1. Baseados em comparagao

o Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Heap Sort, Shell Sort
2. Nao baseados em comparagao

o Counting Sort, Radix Sort, Bucket Sort, Pigeonhole Sort
3. Hibridos

o Tim Sort (Insertion + Merge)

o Intro Sort (Quick + Heap + Insertion)

%> Algoritmos Elementares

e Bubble Sort — Simples, estavel, O(n?)
e Selection Sort — Poucas trocas, nao estavel, O(n?)
e Insertion Sort — Bom para pequenos ou parcialmente ordenados, estavel, O(n?)

Algoritmos Eficientes

e Merge Sort — Divisdo e conquista, estavel, O(n log n), ndo in-place
e Quick Sort — Pivd, muito usado na pratica, O(n log n) médio, O(n?) pior caso
e Heap Sort — Usa heap, O(n log n), in-place, ndo estavel

| Nao Baseados em Comparagéao

e Counting Sort — Usa contagem, O(n + k), eficiente se intervalo pequeno
e Radix Sort — Ordena por digitos, usa Counting Sort como sub-rotina

e Bucket Sort — Distribui em baldes, eficiente para distribuicbes uniformes

14

It Comparagao entre Algoritmos

Tempo de execugao (melhor, médio, pior caso)
Uso de meméria

Estabilidade

Adequacao ao tamanho e distribui¢gdo dos dados

‘X Boas Praticas

e Escolher algoritmo conforme:
o Tamanho do conjunto
o Distribuicdo dos dados
o Estabilidade necessaria
o Restricdes de memoria
e Usar hibridos em cenarios praticos
e Testar desempenho em diferentes cenarios

Y Ordenacao em Memoéria Secundaria

e External Sorting — divide dados em blocos menores e mescla depois
e Merge Sort Externo — usado em bancos de dados e grandes data centers

@ Conclusao

Ordenacéo é fundamental para computagao

N&o existe um "melhor" algoritmo universal

Escolha depende dos dados e da aplicagao

Fornece base para compreender eficiéncia algoritmica e técnicas como divisdo e conquista

	Algoritmos de Ordenação
	Introdução
	Conceitos Básicos de Ordenação
	Classificação dos Algoritmos de Ordenação
	Algoritmos de Ordenação Elementares
	1. Bubble Sort (Ordenação por Bolha)
	2. Selection Sort (Ordenação por Seleção)
	3. Insertion Sort (Ordenação por Inserção)

	Algoritmos de Ordenação Eficientes
	1. Merge Sort (Ordenação por Intercalação)
	2. Quick Sort (Ordenação Rápida)
	3. Heap Sort (Ordenação por Heap)

	Algoritmos de Ordenação Não Baseados em Comparação
	1. Counting Sort (Ordenação por Contagem)
	2. Radix Sort (Ordenação por Raiz)
	3. Bucket Sort (Ordenação por Balde)

	Comparação entre Algoritmos de Ordenação
	Aplicações dos Algoritmos de Ordenação
	Boas Práticas na Implementação de Algoritmos de Ordenação
	Ordenação em Memória Secundária
	External Sorting
	Merge Sort Externo

	Conclusão
	Referências
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

