Algoritmos de Busca

11 o T 11 e T 20 OSSO 1
L 28 o o] o 1= 5 P T o F= T = T L= o 2
Algoritmos de BUSCa €M VetOres.........ccccueiiriiiiiiissrre s ssssss s ssss s s s sssn s s s s s s s smnnnnassnas 2
1. BUSCA LiNEAr (SEQUENCIAI).ttt e e e s e e s s s s s s esesseeeeeeseeseeeeeeseeeeeeeeeeeeeeeaeeaaeees 2
B = 10 L= To= =T g =T = TSP 3
ST = TUESTor= T ool [0] (=T oo = To= Lo P 4
T LY== oo =Y o V] - | PP 4
AIGOritmOS de BUSCA €M AIVOIES........cucuceeirererecnirerasseestessassesssesssssssssssssssssssssssssssssesenssssssssssnssssssssssnsssssssssens 5
1. Arvore de BUSCa BINAMA (BST)... ..ot ee e et e e e e en e 5
VAV oT L=\ TR 6
3. ArVOrE RUDIO-NEGIa.ottt ee ettt e e et e e s e es et et e s e e eseeetes e s eneeetesnananeensesens 6
A, ATVOTE B € B ...ttt e, 7
Algoritmos de BUusSCa €m Grafos.........ccccemiriiiiiiieiirr s 7
1. BUSCA €M Largura (BFES).........uuiiiiiiiiiiiiiiiieee ettt ettt ettt e aaaeaaaeeas 7
2. Busca em Profundidade (DFS)........coooiiiiiiiiiiii oottt e e b b et r s b e resaeeeereeeeeeereeeeaeeees 8
3. AlGOrTMO A& DIJKSTIIaA. ... eas 9
N (o o410 T 1 PP PP TOPPPPPRRP 9
PN To ToT g1 4 L0 LT =TT E=T o= = 4 TN = o 9
A\ (e o] gl iagTo e (=Y el o= TN = U - TSP 9
2. Algoritmo KMP (KNUTh-MOITIS-Pratt)...........cooooi s 9
3. AlGOritmO dE BOYEI-IMOOIE.eeiiiiiiiiiiie ettt e e e e e e e e e e b n e e e e e e e e e e e e e e eeeeaaannnns 10
4. AIgOritmO de RaADIN-KAIP......cciiiiiiiiiiiiii et e e e e ettt e e e e e e ettt e et e e e e e e anbbreeeeaeeeas 10
Estruturas de Dados para Busca Eficiente...........cocveeeiiiiie i ss s s s s s s 10
R =T o 11 = 3 = 1] T 10
2. THES (ArVOrES @ PrEfiXOS).......iveueeeeeeeeeeeeeee ettt ee et eeee e et e et e e see e e es e e stenneaeneenenns 10
3. ATVOTES A8 SUFIXOS. ... ecveieiee ettt e ettt e et e et et e e et e e e eee et et e e s ee s see e ee et e s eee e eanteeeeee e seeneas 11
Comparacgao entre Algoritmos de BUSCa.........ccccceiiriiiiiiinieiir s s 1"
Aplicagoes dos Algoritmos de BUSCA.........cceuiiiiiimiiiiiiiiiiiii e 12
Boas Praticas na Implementacao de Algoritmos de BUSCa...........ccuieeiiiiiiiiiiriisecsssssss s e 12
00T 0 T 11 T3 Vo 12
[T =T 1= e 12

Anexo - Resumo Estruturado/Mapa Mental Gerado por lA...........coooieiiiiiiiirrsssssssssssssss s ssnnns 14

https://prettore.github.io/lectures.html

Introducao

Os algoritmos de busca sdo fundamentais na ciéncia da computacao, pois permitem encontrar informagdes
especificas em conjuntos de dados. Esses algoritmos sao utilizados em diversas aplicacbes, desde a busca
de um elemento em um vetor até a navegagao em grafos complexos para encontrar o caminho mais curto
entre dois pontos. A eficiéncia desses algoritmos é crucial, especialmente quando lidamos com grandes
volumes de dados.

Este material apresenta os principais algoritmos de busca, suas caracteristicas, implementagdes, analises de
complexidade e aplicagbes. Compreender esses algoritmos € essencial para qualquer profissional da area de
computacgao, pois eles ilustram conceitos fundamentais de eficiéncia algoritmica e técnicas de programacao.

O Problema da Busca

O problema da busca consiste em encontrar um elemento especifico em uma colegdo de dados.
Formalmente, dado um conjunto de elementos e um valor alvo, o objetivo é determinar se o valor alvo esta
presente no conjunto e, em caso afirmativo, retornar sua posigao ou referéncia.

Os algoritmos de busca podem ser classificados de varias formas, dependendo da estrutura de dados em que
a busca é realizada, da estratégia utilizada e das garantias oferecidas. Alguns fatores importantes a
considerar na escolha de um algoritmo de busca incluem:

1. Ordenagdo dos dados: Alguns algoritmos exigem que os dados estejam ordenados, enquanto outros
funcionam com dados nao ordenados.

2. Tamanho do conjunto de dados: Para conjuntos pequenos, algoritmos simples podem ser mais eficientes,
enquanto para conjuntos grandes, algoritmos mais sofisticados sao necessarios.

3. Frequéncia das operacbes de busca: Se as buscas sido frequentes, pode valer a pena investir em
estruturas de dados mais complexas que acelerem as operacdes de busca.

4. Restricbes de memoaria: Alguns algoritmos requerem espaco adicional, o que pode ser um fator limitante em
sistemas com restricbes de memodria.

Algoritmos de Busca em Vetores

1. Busca Linear (Sequencial)

A busca linear é o algoritmo de busca mais simples. Ele examina cada elemento de um vetor, um apds o
outro, até encontrar o elemento desejado ou percorrer todo o vetor.

Implementagédo em C:

int linearSearch(int arr[], int n, int x) {
for (inti=0;i<n;i+t+){
if (arrfi] == x)
return i;

return -1; // Elemento ndo encontrado

}

Complexidade:

- Tempo: O(n) no pior caso e caso medio

- Espaco: O(1)

Caracteristicas:

- Simples de implementar

- Funciona em vetores ordenados e nao ordenados

- Ineficiente para grandes conjuntos de dados

- Adequado para pequenos conjuntos de dados ou buscas ocasionais

2. Busca Binaria

A busca binaria é um algoritmo eficiente para encontrar um elemento em um vetor ordenado. Ele funciona
dividindo repetidamente o espago de busca pela metade, comparando o elemento do meio com o valor alvo.

Implementagao em C:

int binarySearch(int arrf], int I, int r, int x) {
while (I <=r){
intm=1+(r-1)/2;

I Verifica se x esta presente no meio
if (arrfm] == x)
return m;

/I Se x é maior, ignora a metade esquerda
if (arrm] < x)
l=m+1;

/l Se x € menor, ignora a metade direita
else
r=m-1;

}

/I Elemento ndo encontrado
return -1;

}

Complexidade:

- Tempo: O(log n) no pior caso e caso médio

- Espaco: O(1) para implementagao iterativa, O(log n) para implementacao recursiva devido a pilha de
chamadas

Caracteristicas:

- Requer que o vetor esteja ordenado

- Muito mais eficiente que a busca linear para grandes conjuntos de dados
- Divide o espacgo de busca pela metade a cada iteragéo
- Adequado para conjuntos de dados grandes e ordenados

3. Busca por Interpolacao

A busca por interpolacdo é uma melhoria da busca binaria para distribuicbes uniformes. Em vez de sempre
dividir o espago de busca pela metade, ela estima a posicdo do elemento com base em seu valor e na
distribuicdo dos valores no vetor.

Implementagédo em C:

int interpolationSearch(int arr], int n, int x) {
int low = 0, high=n - 1;

while (low <= high && x >= arr[low] && x <= arr[high]) {
if (low == high) {
if (arr[low] == x) return low;
return -1;

}

/l Férmula de interpolacdo para estimar a posi¢éao
int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (x - arr[low]));

if (arr[pos] == x)
return pos;

if (arr[pos] < x)
low = pos + 1;
else
high = pos - 1;
}

return -1;

}

Complexidade:

- Tempo: O(log log n) no caso medio para distribui¢gdes uniformes, O(n) no pior caso

- Espaco: O(1)

Caracteristicas:

- Requer que o vetor esteja ordenado

- Mais eficiente que a busca binaria para distribui¢des uniformes

- Menos eficiente para distribuigdes ndo uniformes

- Adequado para conjuntos de dados grandes, ordenados e uniformemente distribuidos

4. Busca Exponencial

A busca exponencial €& util quando o tamanho do vetor é ilimitado ou desconhecido. Ela funciona
determinando um intervalo onde o elemento pode estar e, em seguida, aplicando a busca binaria nesse
intervalo.

Implementagédo em C:

int exponentialSearch(int arr[], int n, int x) {
/I Se o elemento estiver na primeira posi¢cao
if (arr[0] == x)
return O;

/I Encontra o intervalo para a busca binaria
inti=1;
while (i < n && arrfi] <= x)

i=i*2;

/I Aplica busca binaria no intervalo encontrado
return binarySearch(arr, i/2, min(i, n-1), x);

Complexidade:

- Tempo: O(log n) no pior caso

- Espaco: O(1) para implementacgao iterativa

Caracteristicas:

- Requer que o vetor esteja ordenado

- Util para vetores de tamanho desconhecido ou ilimitado

- Combina busca exponencial com busca binaria

- Adequado para situagdes onde o elemento esta préximo ao inicio do vetor

Algoritmos de Busca em Arvores

1. Arvore de Busca Binaria (BST)

Uma arvore de busca binaria € uma estrutura de dados em forma de arvore onde cada n6é tem no maximo dois
filhos (esquerdo e direito), e para cada nd, todos os elementos na subarvore esquerda sdo menores que o no,
e todos os elementos na subarvore direita sdo maiores.

Implementagédo em C:

struct Node {

int key;

struct Node *left, *right;
|3

/I Fungao para criar um novo né
struct Node* newNode(int item) {
struct Node* temp = (struct Node*)malloc(sizeof(struct Node));
temp->key = item;
temp->left = temp->right = NULL;
return temp;
}
/I Fungao para buscar um valor na arvore
struct Node* search(struct Node* root, int key) {
/I Caso base: raiz € NULL ou a chave esta presente na raiz
if (root == NULL || root->key == key)
return root;

/I A chave é maior que a chave da raiz
if (root->key < key)
return search(root->right, key);

/I A chave é menor que a chave da raiz
return search(root->left, key);

Complexidade:

- Tempo: O(h) onde h é a altura da arvore (O(log n) para arvores balanceadas, O(n) no pior caso para arvores
desbalanceadas)

- Espaco: O(h) devido a pilha de chamadas recursivas

Caracteristicas:

- Estrutura de dados dinamica

- Eficiente para operagdes de busca, insercdo e remocao

- Desempenho depende do balanceamento da arvore

- Adequado para conjuntos de dados dindmicos que requerem buscas frequentes

2. Arvore AVL

A arvore AVL é uma arvore de busca binaria balanceada, onde a diferenga de altura entre as subarvores
esquerda e direita de qualquer né n&o pode ser maior que 1.

Caracteristicas:

- Mantém-se balanceada automaticamente

- Garante operagdes de busca, inser¢do e remogao em O(log n)

- Requer rotagdes para manter o balanceamento

- Adequado para conjuntos de dados dindmicos com muitas operagdes de busca

3. Arvore Rubro-Negra

A arvore rubro-negra é outra forma de arvore de busca binaria balanceada, que utiliza cores (vermelho e
preto) para manter o balanceamento.

Caracteristicas:

- Mantém-se balanceada automaticamente

- Garante operacgdes de busca, inser¢do e remocao em O(log n)

- Menos rotacbes que a arvore AVL, mas pode ser menos balanceada

- Adequado para conjuntos de dados dindmicos com muitas operagdes de insercéo e remogao

4. Arvore B e B+

As arvores B e B+ sdo estruturas de dados balanceadas projetadas para sistemas de armazenamento em
disco, onde o0 acesso aos dados € mais caro que as operagdes em memoria.

Caracteristicas:

- Projetadas para minimizar operagoes de 1/O

- Cada né pode ter multiplos filhos

- Mantém todos os dados ordenados

- Adequadas para bancos de dados e sistemas de arquivos

Algoritmos de Busca em Grafos

1. Busca em Largura (BFS)

A busca em largura explora todos os vértices de um grafo em niveis, visitando primeiro todos os vértices
adjacentes a um vértice antes de passar para o préximo nivel.

Implementagdo em C (usando lista de adjacéncia):

void BFS(int graph[][MAX_VERTICES], int start, int vertices) {
/I Marca todos os vértices como nao visitados
bool visited[MAX_VERTICES] = {false};

/I Cria uma fila para BFS
int queue[MAX_VERTICES];
int front = 0, rear = 0;

// Marca o vértice atual como visitado e o enfileira
visited[start] = true;
queuefrear++] = start;

while (front < rear) {
// Desenfileira um vértice e o imprime
int current = queue[front++];
printf("%d ", current);

// Obtém todos os vértices adjacentes do vértice desenfileirado
/l Se um adjacente nao foi visitado, marca-o como visitado e o enfileira
for (inti=0;i < vertices; i++) {
if (graph[current][i] && lvisited]i]) {
visited[i] = true;
queuefrear++] = i;
}
}
}
}

Complexidade:

- Tempo: O(V + E) onde V é o numero de vértices e E é o nimero de arestas
- Espaco: O(V)

Caracteristicas:

- Encontra o caminho mais curto em grafos ndo ponderados

- Usa uma fila para processar os vértices

- Explora o grafo em niveis

- Adequado para encontrar componentes conectados e caminhos mais curtos

2. Busca em Profundidade (DFS)

A busca em profundidade explora o grafo seguindo um caminho até o fim antes de retroceder e explorar
outros caminhos.

Implementagédo em C (usando lista de adjacéncia):

void DFSULil(int graph[][MAX_VERTICES], int vertex, bool visited[], int vertices) {
/I Marca o vértice atual como visitado e o imprime
visited[vertex] = true;
printf("%d ", vertex);

/I Recorre para todos os vértices adjacentes a este vértice
for (inti=0;i < vertices; i++) {
if (graph[vertex][i] && !visited[i])
DFSUtil(graph, i, visited, vertices);
}

}
void DFS(int graph[[MAX_VERTICES], int start, int vertices) {

/I Marca todos os vértices como n3o visitados
bool visited[MAX_VERTICES] = {false};

/I Chama a fungéo auxiliar recursiva para imprimir DFS
DFSUtil(graph, start, visited, vertices);

Complexidade:

- Tempo: O(V + E) onde V é o numero de vértices e E é o nimero de arestas

- Espacgo: O(V) devido a pilha de chamadas recursivas

Caracteristicas:

- Usa uma pilha (implicita na recursao) para processar os vértices

- Explora o grafo em profundidade

- Adequado para encontrar componentes conectados, ciclos e ordenagao topoldgica

3. Algoritmo de Dijkstra

O algoritmo de Dijkstra encontra o caminho mais curto entre um vértice de origem e todos os outros vértices
em um grafo ponderado com pesos nao negativos.

Caracteristicas:

- Encontra o caminho mais curto em grafos ponderados

- Usa uma fila de prioridade para selecionar o proximo vértice

- N&o funciona com arestas de peso negativo

- Adequado para encontrar rotas mais curtas em mapas e redes

4. Algoritmo A*

O algoritmo A* é um algoritmo de busca informada que encontra o caminho mais curto entre um vértice de
origem e um vértice de destino, usando uma heuristica para guiar a busca.

Caracteristicas:

- Combina as vantagens do algoritmo de Dijkstra e da busca gulosa

- Usa uma funcéo heuristica para estimar o custo restante

- Mais eficiente que o algoritmo de Dijkstra para encontrar um caminho especifico

- Adequado para jogos, navegacao de robés e planejamento de rotas

Algoritmos de Busca em Texto

1. Algoritmo de Forga Bruta

O algoritmo de forga bruta para busca em texto compara o padrao com todas as possiveis substrings do texto.
Complexidade:

- Tempo: O(m * n) onde m é o comprimento do padrdo e n € o comprimento do texto

- Espaco: O(1)

Caracteristicas:

- Simples de implementar

- Ineficiente para textos longos

- Nao requer pré-processamento

- Adequado para padrdes curtos ou buscas ocasionais

10

2. Algoritmo KMP (Knuth-Morris-Pratt)

O algoritmo KMP evita comparagdes redundantes usando um array de prefixo que armazena informagdes
sobre o préprio padrao.

Caracteristicas:

- Evita retroceder no texto

- Requer pré-processamento do padréo

- Tempo de execugédo O(m + n)

- Adequado para busca de padrdes em textos longos

3. Algoritmo de Boyer-Moore

O algoritmo de Boyer-Moore usa duas heuristicas (regra do caractere ruim e regra do sufixo bom) para pular
comparacdes desnecessarias.

Caracteristicas:

- Pode pular varias posi¢cdes de uma vez

- Requer pré-processamento do padrao

- Geralmente mais rapido que KMP na pratica

- Adequado para busca de padrdes longos em textos longos

4. Algoritmo de Rabin-Karp

O algoritmo de Rabin-Karp usa hashing para comparar o padrdo com substrings do texto.
Caracteristicas:

- Usa funcgbes hash para comparacoées rapidas

- Bom para busca de multiplos padrdes

- Tempo médio de execugdo O(m + n)

- Adequado para deteccgéo de plagio e busca de multiplos padrdes

Estruturas de Dados para Busca Eficiente

1. Tabelas Hash

As tabelas hash sdo estruturas de dados que mapeiam chaves para valores usando uma fungado hash,
permitindo acesso direto aos elementos.

Caracteristicas:

- Tempo médio de busca, inser¢ao e remogao O(1)

- Requer uma boa funcao hash para evitar colisbes

- Nao mantém os elementos ordenados

- Adequado para dicionarios, caches e conjuntos

11

2. Tries (Arvores de Prefixos)

As tries sdo estruturas de dados especializadas para armazenar um conjunto de strings, onde cada né
representa um prefixo comum.

Caracteristicas:

- Tempo de busca, inser¢ao e remogao O(m) onde m € o comprimento da string

- Eficiente para operagdes de prefixo

- Usa mais memoria que outras estruturas

- Adequado para autocompletar, verificacao ortografica e roteamento IP

3. Arvores de Sufixos

As arvores de sufixos sao estruturas de dados que armazenam todos os sufixos de uma string, permitindo
buscas eficientes de substrings.

Caracteristicas:

- Permite busca de substrings em O(m) onde m é o comprimento da substring

- Requer pré-processamento do texto

- Usa mais memdria que outras estruturas

- Adequado para analise de DNA, compresséo de dados e busca de padrdes

Comparacao entre Algoritmos de Busca

A escolha do algoritmo de busca adequado depende de varios fatores, como o tipo de dados, a frequéncia
das operacbes de busca, as restricoes de memoria e a necessidade de manter os dados ordenados. A tabela
a seguir resume as caracteristicas dos principais algoritmos:

Algoritmo Estrutura de Melhor Caso Pior | Espa¢o | Ordena
Dados Caso Médio Caso do?
Busca Linear Vetor o(1) O(n) o(n) o(1) Nao
Busca Binaria Vetor Oo(1) O(log n) O(log o) Sim
n)
Busca por Vetor o(1) O(log log o(n) o(1) Sim
Interpolagao n)
Arvore de Busca Arvore o(1) O(log n) o(n) o(n) -
Binaria
Arvore AVL Arvore o(1) O(logn) | Of(log o(n) -
n)
Tabela Hash Hash o(1) o) o(n) o(n) Nao

12

BFS (Busca em Grafo o(1) O(V+E) | O(V+ o) -
Largura) E)

DFS (Busca em Grafo o(1) O(V+E) | O+ o) -
Profundidade) E)

Aplicacoes dos Algoritmos de Busca

Os algoritmos de busca tém inumeras aplicacées em diversas areas da computacéo:
. Bancos de dados: Para indexagao e consultas eficientes.

. Sistemas operacionais: Para gerenciamento de processos e recursos.

. Redes de computadores: Para roteamento e gerenciamento de pacotes.

. Inteligéncia artificial: Para busca de solugdes em espacos de estados.

. Processamento de texto: Para busca de padrdes e verificagdo ortografica.

. Computacao grafica: Para deteccao de colisdes e renderizagao.

. Bioinformatica: Para analise de sequéncias de DNA e proteinas.

. Sistemas de recomendacgao: Para encontrar itens similares.

0O ~NOoO Ok, WN -

Boas Praticas na Implementacao de Algoritmos de Busca

1. Escolha o algoritmo adequado para o problema especifico, considerando o tipo de dados, a frequéncia das
operagdes de busca e as restricdes de memoria.

2. Para pequenos conjuntos de dados, algoritmos simples como a busca linear podem ser mais eficientes
devido a baixa sobrecarga.

3. Para grandes conjuntos de dados ordenados, prefira algoritmos como a busca binaria ou estruturas de
dados como arvores balanceadas.

4. Para buscas frequentes, considere estruturas de dados especializadas como tabelas hash ou tries.

5. Implemente otimizagdes especificas para o seu caso de uso, como cache de resultados ou
pré-processamento de dados.

6. Teste o desempenho do algoritmo com diferentes tamanhos e distribuicdes de dados.

Conclusao

Os algoritmos de busca sao ferramentas fundamentais na ciéncia da computacdo, com aplicagbes em
praticamente todas as areas que envolvem processamento de dados. Compreender as caracteristicas,
vantagens e limitagdes de cada algoritmo permite escolher a solugdo mais adequada para cada problema
especifico.

Embora existam algoritmos com complexidade tedrica 6tima para diferentes cenarios, ndo existe um "melhor"
algoritmo universal. A escolha depende das caracteristicas dos dados e dos requisitos especificos da
aplicagéo.

13

O estudo dos algoritmos de busca também fornece insights valiosos sobre técnicas de projeto de algoritmos,
como divisdo e conquista, uso de estruturas de dados auxiliares e analise de complexidade, que s&o
aplicaveis a uma ampla gama de problemas computacionais.

Referéncias

e [| Livros e Apostilas
o CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms. MIT
Press.
SEDGEWICK, R.; WAYNE, K. Algorithms. Addison-Wesley Professional.
KNUTH, D. E. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley.
o ZIVIANI, N. Projeto de Algoritmos com Implementag¢des em Pascal e C. Cengage Learning.
e & Recursos Online
o Khan Academy - Implementacdo de busca binaria de um array -

https://pt.khanacademy.org/computing/computer-science/algorithms/binary-search/a/implementi
ng-binary-search-of-an-array

o Medium - Dart — Algoritmos de Busca: Binaria e Linear -
https://medium.com/@hlfdev/dart-algoritmo-de-busca-bin%C3%A1ria-e-linear-19cb7df6a147
o Wikipedia - Categoria:Algoritmos de busca -

https://pt.wikipedia.org/wiki/Categoria:Algoritmos_de_busca
o IC-Unicamp - Algoritmos de Busca - https://ic.unicamp.br/~mc102/aulas/aulal1.pdf
e %% Videos e Cursos
o Coursera - Algorithms, Part | (Princeton University)
o @ Algoritmos de Busca - Linear e Binaria

Isencao de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagao dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais viola¢cdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagées contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteddo aqui apresentado.

https://www.youtube.com/watch?v=KUUXv6rBCrY
https://pt.khanacademy.org/computing/computer-science/algorithms/binary-search/a/implementing-binary-search-of-an-array
https://pt.khanacademy.org/computing/computer-science/algorithms/binary-search/a/implementing-binary-search-of-an-array
https://medium.com/@hlfdev/dart-algoritmo-de-busca-bin%C3%A1ria-e-linear-19cb7df6a147
https://pt.wikipedia.org/wiki/Categoria:Algoritmos_de_busca
https://ic.unicamp.br/~mc102/aulas/aula11.pdf

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. Introducéo

e Importancia na Ciéncia da Computagao
e Aplicagdes: vetores, arvores, grafos, textos
e Foco: eficiéncia algoritmica e complexidade

2. O Problema da Busca

e Definicdo: localizar um elemento alvo em uma colegao
e Critérios relevantes:

o Ordenagao dos dados

o Tamanho do conjunto

o Frequéncia das buscas

o Restricdes de memoria

3. Algoritmos de Busca em Vetores

e Busca Linear
o Simples, O(n), funciona em dados n&o ordenados
e Busca Binaria
o Vetores ordenados, O(log n)
e Busca por Interpolacao
o Distribuigbes uniformes, O(log log n) no caso médio
e Busca Exponencial
o Util para tamanho de vetor desconhecido

4. Algoritmos de Busca em Arvores

e Arvore de Busca Binaria (BST)
o Estrutura hierarquica, desempenho depende do balanceamento
e Arvore AVL
o Balanceada, garante O(log n)
e Arvore Rubro-Negra
o Balanceada com menos rotagdes que AVL
e Arvore B/B+
o Usada em sistemas de arquivos e bancos de dados

5. Algoritmos de Busca em Grafos

e BFS (Busca em Largura)

o Exploracdo em niveis, encontra caminhos minimos em grafos ndo ponderados
e DFS (Busca em Profundidade)

o Exploracdo em profundidade, util em ciclos e topologia
e Dijkstra

o Caminho minimo em grafos ponderados com pesos positivos
o A*

o Busca informada com heuristica

15

6. Algoritmos de Busca em Texto

Forga Bruta — simples, ineficiente

KMP - evita retrocessos, O(m + n)

Boyer-Moore — pulo de multiplas posi¢coes, muito rapido na pratica
Rabin-Karp — usa hashing, bom para multiplos padrées

7. Estruturas de Dados para Busca Eficiente

e Tabelas Hash — acesso O(1) em média
e Tries (Arvores de Prefixos) — busca em strings, O(m)
e Arvores de Sufixos — busca rapida de substrings

8. Comparacéao

e Critérios:
o Melhor, médio e pior caso
o Espaco adicional necessario
o Necessidade de ordenagao

9. Aplicagdes

Bancos de dados (indexagéo)

Sistemas operacionais (gerenciamento de processos)
Redes (roteamento)

IA (busca em espaco de estados)

Texto (plagio, corregao ortografica)

Bioinformatica (DNA, proteinas)

Recomendacao (itens similares)

10. Boas Praticas

e Escolher o algoritmo conforme tipo de dado e contexto

e Usar algoritmos simples para pequenos conjuntos
e Considerar estruturas especializadas para buscas frequentes
e Testar desempenho em diferentes cenarios

16

11. Conclusao

e Na3ao existe algoritmo universalmente melhor
e Escolha depende dos dados e requisitos
e Estudo fornece base para compreender eficiéncia algoritmica

	Algoritmos de Busca
	Introdução
	O Problema da Busca
	Algoritmos de Busca em Vetores
	1. Busca Linear (Sequencial)
	2. Busca Binária
	3. Busca por Interpolação
	4. Busca Exponencial

	Algoritmos de Busca em Árvores
	1. Árvore de Busca Binária (BST)
	2. Árvore AVL
	3. Árvore Rubro-Negra
	4. Árvore B e B+

	Algoritmos de Busca em Grafos
	1. Busca em Largura (BFS)
	2. Busca em Profundidade (DFS)
	3. Algoritmo de Dijkstra
	4. Algoritmo A*

	Algoritmos de Busca em Texto
	1. Algoritmo de Força Bruta
	2. Algoritmo KMP (Knuth-Morris-Pratt)
	3. Algoritmo de Boyer-Moore
	4. Algoritmo de Rabin-Karp

	Estruturas de Dados para Busca Eficiente
	1. Tabelas Hash
	2. Tries (Árvores de Prefixos)
	3. Árvores de Sufixos

	Comparação entre Algoritmos de Busca
	Aplicações dos Algoritmos de Busca
	Boas Práticas na Implementação de Algoritmos de Busca
	Conclusão
	Referências
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

