Tipos Enumerados e Registros

11 o T 11 e T 20 OSSO 2
LI 2o 53 =1 10T 4 L= = e Lo 2
Definia0 € CONCEItOS BASICOS.cciiiiiieeeeeee e 2
Declaracao e Uso de Variaveis ENUMEradas.ccoccoiiiiii st eeee e e s e e eeeeeseeeeeeeeeees 2
Operagoes com TipoS ENUMEIAdOS...........oooiiiiiiieie s 3
Vantagens dos TiPOS ENUMEIATOS.oouuiiiiiiiie it e e e e e 3
Limitacdes dos Tipos ENUMErados €M C.........eiiiiiiiiiiiiieieeeeeeeeeee ettt a e e e e e e e 3
LT 0 L3 oL (5 T T) 4
Definia0 € COoNCEItOS BASICOS.ccciiieiieee e 4
Declaragao e Inicializag80 de ReEQISIIOS.uuuuiiiii i e e e e e et e e e e e e eeeenes 4
INICIAlIZAGEAO & FEOISIIOS ...t e et e e e e e e e et e e e e e e e e e e e e e e e annnree s 4
Acesso aos Campos de UM REGISIIO.uiiiiiiiiiie e 5
AITAYS A€ REGISIIOS. ...ttt e e e e e sttt e e e e e e e b bttt e e e e e e e e nnnteeeeeeeeeaannes 5
(=T 153 {0 TSN T] = o [1 P 5
Passagem de Registros para FUNGOES.oocuiiiiiii ettt s e e e e e et e e e e e e e e e eaaaaa e e e aaeaeenns 6
Retorno de Registros POr FUNGOES.ooiiiiiiiiiieee e 6
(O7eTapToL=T = Tor= oI =T a1 (=Y m =T o LS 1 7
ALFDUICEO ENTIE REGISIIOS. ... ettt ettt ettt ettt et e e et e aaaeaaaaaaaeaas 7
LR L= 1] T T LT =T 0 L3 40T 7SR 7
Us0Ss Avangados dE REQISIIOS.coooiiiiiii it e e e e e e e e e e e e e et e e e e e e e e e eetean e e eeens 7
Combinando Tipos Enumerados @ RegiStros.........cccciiiiimmimiiiniiississs s s 8
Diferengas entre Registros em Diversas LiNQUAageNs............ccocvmimmiiininsmmsssssss s sssssssssnes 8
Boas Praticas no Uso de Tipos Enumerados e RegisStros..........ccccciiiniieiimnnnnnssssnse s ssssssssnnnes 8
2N o] e oda YT ad - 1A o L= S 8
L0 0T 0 T 117 T 8
=T =T =T e 9
Anexo - Resumo Estruturado/Mapa Mental Gerado por lA...........coooiiiiiiiicrirssssssssssssss s smnnns 10
Introdugao

Os tipos enumerados e registros sdo estruturas fundamentais na programagdo que permitem aos
desenvolvedores criar tipos de dados personalizados para representar informacbes de maneira mais
organizada e intuitiva. Enquanto os tipos enumerados permitem definir um conjunto finito de valores
nomeados, os registros (ou structs) possibilitam agrupar diferentes tipos de dados relacionados em uma unica
unidade ldgica.

Estas estruturas s&o essenciais para o desenvolvimento de programas bem estruturados, pois facilitam a
modelagem de entidades do mundo real e tornam o cdédigo mais legivel e manutenivel. Neste material,

https://prettore.github.io/lectures.html

exploraremos os conceitos, sintaxes e aplica¢gdes dos tipos enumerados e registros, com foco especial na
linguagem C, embora os conceitos sejam aplicaveis a diversas linguagens de programacéo.

Tipos Enumerados

Definicdo e Conceitos Basicos

Um tipo enumerado (enum) €& um tipo de dado definido pelo usuario que consiste em um conjunto de
constantes nomeadas, chamadas enumeradores. Os tipos enumerados sao utilizados para representar um
conjunto finito de valores discretos, como dias da semana, meses do ano, estados de um processo, entre
outros.

Em linguagens como C, os enumeradores sdo, na realidade, constantes inteiras. O compilador associa
automaticamente valores inteiros sequenciais aos enumeradores, comecando por 0 para o primeiro
enumerador, 1 para o segundo, e assim por diante, a menos que valores especificos sejam atribuidos
explicitamente.

A sintaxe basica para definir um tipo enumerado em C é:

enum nome_do_tipo {
identificador1,
identificador2,

identificadorN

|3

Declaracao e Uso de Variaveis Enumeradas

Para declarar uma variavel de um tipo enumerado:

enum dias_semana amanha = TERCA,

Também é possivel usar typedef para criar um nome de tipo mais conciso:

typedef enum {
DOMINGO,
SEGUNDA,

} DiaSemana;
DiaSemana hoje = SEGUNDA,;

Operacgdes com Tipos Enumerados

Os tipos enumerados em C sdo tratados como inteiros, o que permite realizar operagcbes aritméticas e
comparagoes:

enum dias_semana hoje = SEGUNDA,;
enum dias_semana amanha = hoje + 1; // amanha = TERCA
if (hoje < amanha) {

printf("Hoje vem antes de amanha
");
}

/I lterando pelos dias da semana
for (enum dias_semana dia = DOMINGO; dia <= SABADO; dia++) {
/| Fazer algo com cada dia

}

No entanto, € importante ter cuidado com essas operagdes, pois elas podem resultar em valores que nao
correspondem a nenhum enumerador valido.

Vantagens dos Tipos Enumerados

1. Legibilidade: Tornam o cédigo mais legivel ao usar nomes significativos em vez de numeros magicos.

2. Seguranca de tipo: Ajudam a prevenir erros ao restringir os valores possiveis.

3. Documentagdo: Servem como documentagao do cddigo, tornando explicito o conjunto de valores validos.
4. Manutenibilidade: Facilitam a manutencéo, pois alteragdes nos valores sédo centralizadas.

Limitacdes dos Tipos Enumerados em C

1. Nao sao tipos fortemente tipados: O compilador C permite atribuir qualquer valor inteiro a uma variavel
enum.

2. Nao possuem namespace: Os nomes dos enumeradores sao globais ao escopo em que sao definidos.

3. Nao suportam métodos ou propriedades como em linguagens orientadas a objetos.

Registros (Structs)

Definicdo e Conceitos Basicos

Um registro (struct) € um tipo de dado composto que agrupa variaveis de diferentes tipos sob um Gnico nome.
Cada variavel dentro de um registro € chamada de campo ou membro. Os registros séo utilizados para
representar entidades complexas do mundo real, como pessoas, produtos, contas bancarias, entre outros.
Diferentemente dos arrays, que armazenam elementos do mesmo tipo, os registros podem conter elementos
de tipos diferentes, o que os torna ideais para modelar objetos com multiplas caracteristicas.

A sintaxe basica para definir um registro em C é:

struct nome_do_tipo { Exemplo:
tipo1 campo1;
tipo2 campoz; struct pessoa {

char nome[50];

tipoN campoN; int idade;
|3 float altura;
float peso;

|3

Assim como com enums, € comum usar typedef para criar um nome de tipo mais conciso:

typedef struct {
char nome[50];
int idade;
float altura;
float peso;

} Pessoa;

Declaracao e Inicializacao de Registros

Para declarar uma variavel de um tipo registro:

struct pessoa p1;
/I Ou usando typedef
Pessoa p2;

Inicializagao de registros:

/I Inicializagdo por membros /I Inicializagdo membro a membro
struct pessoa p1 = {"Jodo Silva", 30, 1.75, 70.5}; struct pessoa p3;
strcpy(p3.nome, "Pedro Oliveira");

/I Inicializag&o por designadores (C++ em diante) p3.idade = 40;
struct pessoa p2 = { p3.altura = 1.80;

.nome = "Maria Santos", p3.peso = 85.0;

.idade = 25,

.altura = 1.65,

.peso = 60.0
2

Acesso aos Campos de um Registro

Para acessar os campos de um registro, utiliza-se o operador ponto (.):

struct pessoa p1;
strcpy(p1.nome, "Jodo Silva");
p1.idade = 30;

p1.altura = 1.75;

p1.peso = 70.5;

printf("Nome: %s", p1.nome);
printf("ldade: %d anos", p1.idade);
printf("Altura: %.2f m", p1.altura);
printf("Peso: %.1f kg", p1.peso);

Quando se trabalha com ponteiros para registros, utiliza-se o operador seta (->):

struct pessoa *ptr = &p1;
printf("Nome: %s", ptr->nome); // Equivalente a (*ptr).nome
printf("ldade: %d anos", ptr->idade);

Arrays de Registros

E comum utilizar arrays de registros para armazenar cole¢des de objetos do mesmo tipo:

struct pessoa equipe[10]; // Array de 10 pessoas
for (inti=0;i<10; i++) {// lterando pelo array
printf("Pessoa %d: %s, %d anos", i+1, equipe[i].nome, equipeli].idade);

}

Registros Aninhados

Registros podem conter outros registros como membros, permitindo criar estruturas de dados mais
complexas:

struct endereco {

char rua[50];

int numero;

char cidade[30];

char estado[3];

char cep[10];
2
struct pessoa {

char nome[50];

int idade;

struct endereco residencia; // Registro aninhado
2
/I Acesso a campos de registros aninhados
struct pessoa p;
strcpy(p.residencia.cidade, "S&o Paulo");
p.residencia.numero = 123;

Passagem de Registros para Fungbes

Registros podem ser passados para fungdes por valor ou por referéncia:

1. Passagem por valor:

void imprime_pessoa(struct pessoa p) {
printf("Nome: %s, Idade: %d", p.nome, p.idade);
}
/l Chamada
imprime_pessoa(p1);

2. Passagem por referéncia (usando ponteiros):

void atualiza_idade(struct pessoa *p, int nova_idade) {
p->idade = nova_idade;

}

/l Chamada

atualiza_idade(&p1, 31);

A passagem por referéncia é geralmente mais eficiente para registros grandes, pois evita a copia de todos os

dados.

Retorno de Registros por Funcgdes

Fungbes também podem retornar registros:

struct pessoa p;
strcpy(p.nome, nome);
p.idade = idade;
p.altura = altura;
p.peso = peso;
return p;

}

/' Uso

struct pessoa p1 = cria_pessoa("Jodo Silva", 30, 1.75, 70.5);

struct pessoa cria_pessoa(char *nome, int idade, float altura,

float peso) {

Comparacao entre Registros

Em C, ndo é possivel comparar registros diretamente usando operadores como == ou !=. E necessario

comparar cada campo individualmente:
[J

Atribuicdo entre Registros

A atribuicdo entre registros do mesmo tipo € permitida e

strcmp(p1.nome, p2.nome) == 0 && p1.idade == p2.idade;

copia todos os campos:

struct pessoa p1 = {"Joao Silva", 30, 1.75, 70.5};
struct pessoa p2;
p2 = p1; // Todos os campos de p1 sdo copiados para p2

Tamanho de Registros

O tamanho de um registro ndo é necessariamente a soma dos tamanhos de seus campos devido ao
alinhamento de memodria:

struct exemplo {
charc; //1byte
inti; // 4 bytes
double d; // 8 bytes
2

/I sizeof(struct exemplo) pode ser maior que 13 bytes

O compilador pode inserir bytes de preenchimento (padding) entre os campos para garantir o alinhamento
adequado, o que pode resultar em um tamanho total maior que a soma dos tamanhos individuais.

Usos Avancgados de Registros

1. Unides dentro de registros:

struct valor {
enum { INTEIRO, REAL } tipo;
union {
int i;
float f;
} dados;
2

2. Campos de bits:
e unsigned int flag1 : 1; // Usa apenas 1 bit

3. Registros auto-referenciados (para estruturas de dados como listas ligadas):
e struct no *proximo; // Ponteiro para outro nd

Combinando Tipos Enumerados e Registros

Os tipos enumerados e registros podem ser combinados de maneira eficaz para criar estruturas de dados
mais expressivas e seguro, aproveitando as vantagens de ambas as estruturas.

Diferencas entre Registros em Diversas Linguagens

Embora o conceito de registros seja similar em diferentes linguagens de programacao, existem algumas
diferencas importantes:

1. C: Usa a palavra-chave struct, sem encapsulamento ou métodos.

2. C++: Estende o conceito de struct para incluir métodos, construtores e heranca.

3. Pascal: Usa a palavra-chave record, com sintaxe ligeiramente diferente.

4. Java: Nao tem registros tradicionais, mas introduziu o conceito de "record" no Java 16 como um tipo de

classe imutavel.
5. Python: Usa classes ou namedtuples, e a partir do Python 3.7, dataclasses.

Boas Praticas no Uso de Tipos Enumerados e Registros

1. Nomeacao clara e significativa para tipos, enumeradores e campos.

2. Documentagao adequada, especialmente para registros complexos.

3. Organizacao légica dos campos em registros, agrupando campos relacionados.

4. Uso de typedef para criar nomes de tipos mais concisos.

5. Validacdo de valores ao trabalhar com enumerados, especialmente quando os valores vém de fontes
externas.

6. Criacao de fungdes auxiliares para operagdes comuns com registros (inicializagido, copia, comparagao).

7. Consideracdo do alinhamento de memoria ao definir a ordem dos campos em registros para otimizar o uso
de memoria.

Aplicagbes Praticas

Tipos Enumerados e Registros sdo amplamente utilizados em diversas areas da programacao:

1. Modelagem de dados: Representagao de entidades do mundo real (pessoas, produtos, transacgoes).
2. Interfaces graficas: Definicdo de cores, estilos, estados de componentes.

3. Protocolos de comunicacgao: Definicao de tipos de mensagens, cddigos de erro.

4. Compiladores e interpretadores: Representacao de tokens, nds de arvores sintaticas.

5. Jogos: Estados de jogo, tipos de personagens, itens.

6. Sistemas embarcados: Configuragao de hardware, estados de maquinas de estado.

Conclusao

Os tipos enumerados e registros sdo ferramentas fundamentais na programacao estruturada, permitindo a
criacdo de tipos de dados personalizados que melhor representam os conceitos do dominio do problema.
Enquanto os tipos enumerados oferecem uma maneira elegante de definir conjuntos de constantes
nomeadas, os registros permitem agrupar dados relacionados em uma Unica unidade logica.

O uso adequado dessas estruturas resulta em codigo mais legivel, manutenivel e menos propenso a erros.
Além disso, elas servem como base para conceitos mais avangados em linguagens orientadas a objetos,
como classes e objetos.

Ao dominar os tipos enumerados e registros, os programadores adquirem ferramentas poderosas para
modelar dados de forma eficiente e expressiva, contribuindo para o desenvolvimento de software de alta
qualidade.

Referéncias

e | _|Livros e Apostilas
o KERNIGHAN, B. W.; RITCHIE, D. M. C: A Linguagem de Programacao Padrao ANSI. Campus.

o DEITEL, H. M.; DEITEL, P. J. C: Como Programar. Pearson.
o SCHILDT, H. C Completo e Total. Makron Books.
o BACKES, A. Linguagem C: Completa e Descomplicada. Elsevier.
e & Recursos Online
o IC-Unicamp - Tipos Enumerados e Registros
https://www.ic.unicamp.br/~zanoni/teaching/mc102/2013-2s/aulas/aula17.pdf

PUCRS - Programacao C - Structs - https://www.inf.pucrs.br/~pinho/Laprol/Structs/Structs.htm

Embarcados - Struct - Registros em Linguagem C -
https://fembarcados.com.br/struct-registros-em-linguagem-c/
o IC-Unicamp - Aula 21 - Registros -

https://ic.unicamp.br/~ducatte/mc102/aula21.comrespostas.pdf
o &% Videos e Cursos
o Registros, Tipos e Enumerados em C - Aula 16 -

https://www.youtube.com/watch?v=VVLRSRMXxmk

Isencéo de Responsabilidade:

Os autores deste documento néo reivindicam a autoria do conteldo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagéo dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagées contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteudo aqui apresentado.

https://www.ic.unicamp.br/~zanoni/teaching/mc102/2013-2s/aulas/aula17.pdf
https://www.inf.pucrs.br/~pinho/LaproI/Structs/Structs.htm
https://embarcados.com.br/struct-registros-em-linguagem-c/
https://ic.unicamp.br/~ducatte/mc102/aula21.comrespostas.pdf
https://www.youtube.com/watch?v=VVLRSRMXxmk

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. Introdugéo

e Estruturas fundamentais para criar tipos personalizados
e Representam informacdes de forma organizada e intuitiva
e Auxiliam na modelagem de entidades do mundo real

10

2. Tipos Enumerados (enum)

e Definigao: conjunto finito de valores nomeados (constantes inteiras).
e Exemplos: dias da semana, meses, estados de um processo.

Declaragao:
enum dias_semana { DOMINGO, SEGUNDA, ... SABADO };

e Uso de typedef para nomes mais curtos.
Operacgoes

e Podem ser tratados como inteiros (soma, comparagao, iteragao).
e Atencao a valores invalidos fora do conjunto.

Vantagens

1. Maior legibilidade do cédigo

2. Segurancga de tipo (restricdo de valores)
3. Servem como documentacao implicita
4. Melhor manutengao

Limitagdes em C

e Nao sao fortemente tipados
e Enumeradores ndo possuem namespace proprio
e Nao tém métodos ou propriedades

3. Registros (structs)
e Definigao: agrupam variaveis de diferentes tipos sob um unico nome.

Exemplo:
struct pessoa { char nome[50]; int idade; float altura; };

Declaragao e inicializagao: por membros, designadores ou manual.
Acesso aos campos: operador . (ponto) ou -> (ponteiros).

Extensdes

Arrays de registros (colegbes de entidades)
Registros aninhados (ex.: endereco dentro de pessoa)
Passagem a fung¢oées: por valor ou referéncia

Retorno de registros por fungdes

Atribuicao entre registros: copia todos os campos
Comparagao: precisa ser campo a campo

Tamanho: pode variar devido a padding/alinhamento

Usos avangados

Unides dentro de registros
Campos de bits
Estruturas auto-referenciadas (listas ligadas, arvores, etc.)

11

4. Combinagdo Enum + Struct

Permite estruturas mais expressivas e seguras
Exemplo: um campo enum para indicar tipo e um struct para armazenar dados

5. Diferengas entre Linguagens

C: struct simples, sem métodos

C++: structs com métodos, heranga, construtores
Pascal: usa record

Java: introduziu record (imutavel) no Java 16
Python: usa namedtuple, dataclass ou classes

6. Boas Praticas

Nomeacao clara e significativa

Documentacao dos tipos e campos

Agrupamento légico de campos relacionados

Uso de typedef para clareza

Validagao de valores de enums (especialmente vindos de fora)
Funcgbes auxiliares para inicializar/copiar registros

Considerar alinhamento de memoéria ao definir campos

12

7. Aplicagdes Praticas

Modelagem de dados (pessoas, produtos, transagoes)

Interfaces graficas (cores, estilos, estados)

Protocolos de comunicag¢ao (cédigos de erro, tipos de mensagens)
Compiladores (tokens, arvores sintaticas)

Jogos (tipos de personagens, estados do jogo)

Sistemas embarcados (configuraces de hardware, maquinas de estado)

	Tipos Enumerados e Registros
	Introdução
	Tipos Enumerados
	Definição e Conceitos Básicos
	​Declaração e Uso de Variáveis Enumeradas
	Operações com Tipos Enumerados
	Vantagens dos Tipos Enumerados
	Limitações dos Tipos Enumerados em C

	Registros (Structs)
	Definição e Conceitos Básicos
	Declaração e Inicialização de Registros
	Inicialização de registros:
	Acesso aos Campos de um Registro
	Arrays de Registros
	Registros Aninhados
	Passagem de Registros para Funções
	Retorno de Registros por Funções
	Comparação entre Registros
	Atribuição entre Registros
	Tamanho de Registros
	Usos Avançados de Registros

	Combinando Tipos Enumerados e Registros
	Diferenças entre Registros em Diversas Linguagens
	Boas Práticas no Uso de Tipos Enumerados e Registros
	Aplicações Práticas
	Conclusão
	Referências
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

