
1

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de conteúdos bibliográficos
disponíveis gratuitamente na Internet.
Arquivos Textos e Binários
Introdução..2
Conceito de Arquivos e Manipulação em Programas... 2

A manipulação de arquivos em programas geralmente segue um padrão comum:....................................... 2
Abertura, Leitura, Escrita e Fechamento de Arquivos...2

Abertura de Arquivos...2
Leitura de Arquivos..3
Escrita em Arquivos...4
Fechamento de Arquivos...4
Modos de Abertura de Arquivos..5

Diferenças entre Arquivos Texto e Binário...5
Arquivos de Texto..5
Arquivos Binários.. 6
Comparação Prática..6

Manipulação com Ponteiros de Arquivo...6
Acesso Aleatório vs. Sequencial... 7

Tratamento de Erros... 8
Arquivos Temporários.. 8
Redirecionamento de Entrada e Saída Padrão...8
Bufferização de Arquivos...8
Boas Práticas na Manipulação de Arquivos...9
Conclusão..9
Referências..9
Anexo - Resumo Estruturado/Mapa Mental Gerado por IA... 11

Introdução
O processamento de arquivos é uma parte fundamental da programação, permitindo que os programas
armazenem e recuperem dados de forma persistente. Diferentemente das variáveis em memória, cujos
valores são perdidos quando o programa termina, os arquivos permitem que os dados sejam preservados
entre diferentes execuções do programa. Existem dois tipos principais de arquivos utilizados em programação:
arquivos de texto e arquivos binários, cada um com suas características, vantagens e aplicações específicas.
Neste material, exploraremos os conceitos fundamentais de manipulação de arquivos, com foco nas
operações básicas como abertura, leitura, escrita e fechamento. Também discutiremos as diferenças entre
arquivos de texto e binários, os modos de acesso disponíveis e as funções específicas para manipulação de
cada tipo de arquivo. Embora os exemplos sejam principalmente em linguagem C, os conceitos são aplicáveis
a diversas linguagens de programação.

https://prettore.github.io/lectures.html

2

Conceito de Arquivos e Manipulação em Programas
Um arquivo é uma coleção de dados armazenados em um dispositivo de armazenamento secundário, como
um disco rígido, SSD ou pendrive. Do ponto de vista do sistema operacional, um arquivo é identificado por um
nome e um caminho que indica sua localização no sistema de arquivos. Para os programas, um arquivo é
acessado através de um ponteiro ou identificador que serve como intermediário entre o programa e o sistema
operacional.

A manipulação de arquivos em programas geralmente segue um padrão
comum:
1. Abertura do arquivo: Estabelece uma conexão entre o programa e o arquivo, especificando o modo de
acesso (leitura, escrita, etc.).​
2. Processamento: Realização de operações de leitura e/ou escrita no arquivo.​
3. Fechamento do arquivo: Encerra a conexão, liberando recursos do sistema e garantindo que todos os
dados sejam salvos corretamente.
Em linguagem C, a manipulação de arquivos é realizada através da biblioteca padrão <stdio.h>, que fornece
funções como fopen(), fclose(), fread(), fwrite(), fprintf(), fscanf(), entre outras.

Abertura, Leitura, Escrita e Fechamento de Arquivos

Abertura de Arquivos
A abertura de um arquivo é realizada através da função fopen(), que recebe como parâmetros o nome do
arquivo e o modo de abertura. Esta função retorna um ponteiro para o tipo FILE, que será utilizado em todas
as operações subsequentes com o arquivo.
Sintaxe em C:

FILE *fopen(const char *filename, const char *mode);​

Exemplo:​
​
FILE *arquivo;​
arquivo = fopen("dados.txt", "r"); // Abre o arquivo
"dados.txt" para leitura
if (arquivo == NULL) {​
 printf("Erro ao abrir o arquivo.​
");​
 return 1;​
}

É importante sempre verificar se a abertura do arquivo foi bem-sucedida, pois diversos fatores podem impedir
a abertura, como permissões insuficientes, arquivo inexistente (no caso de leitura), ou disco cheio (no caso de
escrita).

3

Leitura de Arquivos
A leitura de dados de um arquivo pode ser realizada de várias formas, dependendo do tipo de dado e da
estrutura do arquivo:
1. Leitura formatada com fscanf():

int fscanf(FILE *stream, const char *format, ...);​

Exemplo:​
​
int idade;​
char nome[50];​
fscanf(arquivo, "%s %d", nome, &idade);

2. Leitura de caracteres com fgetc():

int fgetc(FILE *stream);​

Exemplo:​
​
int c;​
while ((c = fgetc(arquivo)) != EOF) {​
 putchar(c); // Imprime o caractere lido​
}

3. Leitura de linhas com fgets():

char *fgets(char *str, int n, FILE *stream);​

Exemplo:​
​
char linha[100];​
while (fgets(linha, sizeof(linha), arquivo) != NULL) {​
 printf("%s", linha); // Imprime a linha lida​
}

4. Leitura de blocos de dados com fread():

size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);​

Exemplo:​
​
struct pessoa {​
 char nome[50];​
 int idade;​
};
struct pessoa p;​
fread(&p, sizeof(struct pessoa), 1, arquivo);

Escrita em Arquivos
A escrita em arquivos também pode ser realizada de várias formas:
1. Escrita formatada com fprintf():

int fprintf(FILE *stream, const char *format, ...);​

Exemplo:​
​
fprintf(arquivo, "Nome: %s, Idade: %d​
", "João", 30);

4

2. Escrita de caracteres com fputc():

int fputc(int c, FILE *stream); Exemplo:
fputc('A', arquivo);

3. Escrita de strings com fputs():

int fputs(const char *str, FILE *stream);​

Exemplo:​
​
fputs("Olá, mundo!", arquivo);

4. Escrita de blocos de dados com fwrite():

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);​

Exemplo:
struct pessoa p = {"Maria", 25};​
fwrite(&p, sizeof(struct pessoa), 1, arquivo);

Fechamento de Arquivos
Após concluir as operações com um arquivo, é essencial fechá-lo usando a função fclose():

int fclose(FILE *stream);​

Exemplo:​
​
fclose(arquivo);

O fechamento de arquivos é importante por várias razões:
1. Libera recursos do sistema operacional.​
2. Garante que todos os dados em buffer sejam efetivamente escritos no arquivo.​
3. Permite que outros programas acessem o arquivo (em sistemas que implementam bloqueio de arquivos).​
4. Previne corrupção de dados.

Modos de Abertura de Arquivos
Os modos de abertura determinam as operações permitidas em um arquivo e como o arquivo será tratado
durante a abertura. Os principais modos são:
1. "r" - Abre um arquivo para leitura. O arquivo deve existir.​
2. "w" - Cria um arquivo para escrita. Se o arquivo já existir, seu conteúdo será truncado (apagado).​
3. "a" - Abre um arquivo para escrita no final (append). Se o arquivo não existir, ele será criado.​
4. "r+" - Abre um arquivo para leitura e escrita. O arquivo deve existir.​
5. "w+" - Cria um arquivo para leitura e escrita. Se o arquivo já existir, seu conteúdo será truncado.​
6. "a+" - Abre um arquivo para leitura e escrita no final. Se o arquivo não existir, ele será criado.
Para arquivos binários, adiciona-se o caractere "b" ao modo (ex: "rb", "wb", "ab", etc.).
Exemplo em C:​
​
FILE *arquivo_texto = fopen("dados.txt", "r"); // Abre para leitura (texto)​
FILE *arquivo_binario = fopen("dados.bin", "wb"); // Abre para escrita (binário)​
FILE *arquivo_append = fopen("log.txt", "a"); // Abre para append (texto)​
FILE *arquivo_rw = fopen("config.txt", "r+"); // Abre para leitura e escrita (texto)

5

Diferenças entre Arquivos Texto e Binário

Arquivos de Texto
Os arquivos de texto armazenam dados em formato legível por humanos, utilizando caracteres ASCII ou
Unicode. Cada byte ou sequência de bytes representa um caractere, e os dados são organizados em linhas
separadas por caracteres especiais
Características dos arquivos de texto:
1. Legibilidade: Podem ser abertos e editados em editores de texto simples.​
2. Portabilidade: Podem ser transferidos entre diferentes sistemas, embora possam ocorrer problemas com
caracteres de fim de linha.​
3. Representação de números: Números são armazenados como sequências de caracteres (ex: o número 123
é armazenado como os caracteres '1', '2' e '3').​
4. Tamanho: Geralmente ocupam mais espaço que arquivos binários equivalentes, pois cada dígito de um
número é armazenado como um caractere.​
5. Processamento: A conversão entre representação interna e texto pode adicionar overhead de
processamento.
Exemplo de escrita em arquivo de texto em C:

FILE *arquivo = fopen("dados.txt", "w");​
fprintf(arquivo, "Nome: João Idade: 30 Altura: 1.75");​
fclose(arquivo);

Arquivos Binários
Os arquivos binários armazenam dados em formato nativo da máquina, sem conversão para texto. Os bytes
são interpretados diretamente como valores binários, sem considerar representações de caracteres.
Características dos arquivos binários:
1. Eficiência: Geralmente ocupam menos espaço e são processados mais rapidamente.​
2. Precisão: Preservam a representação exata dos dados, sem perdas de precisão em conversões.​
3. Não legíveis: Não podem ser facilmente visualizados ou editados em editores de texto.​
4. Portabilidade limitada: Podem não ser compatíveis entre diferentes arquiteturas de computadores devido a
diferenças na representação interna de dados (endianness, tamanho de tipos, etc.).​
5. Acesso direto: Facilitam o acesso aleatório a registros de tamanho fixo.
Exemplo de escrita em arquivo binário em C:

struct pessoa {​
 char nome[50];​
 int idade;​
 float altura;​
};
struct pessoa p = {"João", 30, 1.75};

6

FILE *arquivo = fopen("dados.bin", "wb");​
fwrite(&p, sizeof(struct pessoa), 1, arquivo);​
close(arquivo);

Comparação Prática
Para ilustrar a diferença entre arquivos de texto e binários, considere o armazenamento de um número inteiro,
como 12345:
- Em um arquivo de texto, seriam necessários 5 bytes para armazenar os caracteres '1', '2', '3', '4' e '5'.​
- Em um arquivo binário, seriam necessários apenas 4 bytes (assumindo um int de 32 bits), com o valor
armazenado diretamente em formato binário.

Manipulação com Ponteiros de Arquivo
Além das funções básicas de leitura e escrita, a biblioteca padrão C oferece funções para manipular a posição
atual no arquivo (ponteiro de arquivo):
1. fseek() - Posiciona o ponteiro de arquivo em uma posição específica:​
​
int fseek(FILE *stream, long offset, int whence);​
​
Os valores possíveis para whence são:​
- fseek(arquivo, 0, SEEK_SET); // Posiciona o ponteiro no início do arquivo​
- fseek(arquivo, 10, SEEK_CUR); // Avança 10 bytes a partir da posição atual​
- fseek(arquivo, -5, SEEK_END); // Posiciona o ponteiro 5 bytes antes do fim do arquivo
2. ftell() - Retorna a posição atual do ponteiro de arquivo:

long ftell(FILE *stream);​

Exemplo:​
long posicao = ftell(arquivo);​
printf("Posição atual: %ld bytes​
", posicao);

3. rewind() - Reposiciona o ponteiro de arquivo no início:

void rewind(FILE *stream); Exemplo:​
rewind(arquivo); // Equivalente a fseek(arquivo, 0,
SEEK_SET);

​
4. feof() - Verifica se o fim do arquivo foi atingido:

int feof(FILE *stream);​

Exemplo:​
while (!feof(arquivo)) {​
 // Processa o arquivo​
}

7

Acesso Aleatório vs. Sequencial
Os arquivos podem ser acessados de duas formas principais:
1. Acesso Sequencial: Os dados são lidos ou escritos em sequência, do início ao fim do arquivo. É o modo
mais comum para arquivos de texto.
2. Acesso Aleatório: Os dados podem ser acessados diretamente em qualquer posição do arquivo, sem
necessidade de ler os dados anteriores. É particularmente útil para arquivos binários com registros de
tamanho fixo.
Exemplo de acesso aleatório a registros em um arquivo binário:

struct pessoa {​
 char nome[50];​
 int idade;​
 float altura; };​
// Abre o arquivo binário​
FILE *arquivo = fopen("pessoas.bin", "rb");
// Calcula o tamanho de cada registro​
size_t tamanho_registro = sizeof(struct pessoa);
// Acessa diretamente o terceiro registro (índice 2)​
fseek(arquivo, 2 * tamanho_registro, SEEK_SET);
// Lê o registro​
struct pessoa p;​
fread(&p, tamanho_registro, 1, arquivo);
printf("Nome: %s, Idade: %d, Altura: %.2f​
", p.nome, p.idade, p.altura);
fclose(arquivo);

Tratamento de Erros
O tratamento adequado de erros é crucial na manipulação de arquivos. Além de verificar o retorno de fopen(),
é importante verificar o resultado de outras operações:
A função perror() é particularmente útil, pois imprime uma mensagem descritiva do erro baseada no valor da
variável global errno.

Arquivos Temporários
Em algumas situações, é necessário criar arquivos temporários que serão utilizados apenas durante a
execução do programa. A biblioteca padrão C oferece funções específicas para isso:
1. tmpfile() - Cria um arquivo temporário no modo "wb+":

FILE *temp = tmpfile();​
if (temp != NULL) {​
 // Usa o arquivo temporário​
 fclose(temp); // O arquivo é automaticamente removido ao ser fechado​
}

8

2. tmpnam() - Gera um nome único para um arquivo temporário:

char nome_temp[L_tmpnam];​
if (tmpnam(nome_temp) != NULL) {​
 printf("Nome de arquivo temporário: %s​
", nome_temp);​
 // Usa o nome para criar um arquivo​
}

Redirecionamento de Entrada e Saída Padrão
É possível redirecionar a entrada e saída padrão (stdin, stdout, stderr) para arquivos. A biblioteca padrão C
define três fluxos de arquivo que estão sempre disponíveis:
1. stdin - Entrada padrão (geralmente o teclado)​
2. stdout - Saída padrão (geralmente a tela)​
3. stderr - Saída de erro padrão (geralmente a tela)

Bufferização de Arquivos
Por padrão, as operações de arquivo em C são bufferizadas para melhorar o desempenho. Isso significa que
os dados não são imediatamente escritos no disco, mas armazenados em um buffer na memória até que seja
necessário escrevê-los (quando o buffer fica cheio, quando o arquivo é fechado, ou quando fflush() é
chamado).
A função fflush() força a escrita dos dados bufferizados:

●​ fflush(arquivo); // Força a escrita dos dados bufferizados
É possível controlar o modo de bufferização com a função setvbuf():

●​ setvbuf(arquivo, NULL, _IONBF, 0); // Desativa a bufferização
●​ setvbuf(arquivo, NULL, _IOLBF, BUFSIZ); // Bufferização por linha
●​ setvbuf(arquivo, NULL, _IOFBF, BUFSIZ); // Bufferização completa

Boas Práticas na Manipulação de Arquivos
1. Sempre verifique o resultado das operações de arquivo.​
2. Feche os arquivos após o uso.​
3. Trate adequadamente os erros.​
4. Use nomes de arquivo significativos e extensões apropriadas.​
5. Documente o formato dos arquivos, especialmente para arquivos binários.​
6. Considere a portabilidade ao trabalhar com arquivos binários.​
7. Faça backup de arquivos importantes antes de modificá-los.​
8. Use funções de alto nível (fprintf, fscanf) para arquivos de texto e funções de baixo nível (fread, fwrite) para
arquivos binários.​
9. Considere o uso de bibliotecas específicas para formatos complexos (XML, JSON, etc.).​
10. Implemente mecanismos de recuperação para casos de falha durante operações críticas.

9

Conclusão
A manipulação de arquivos é uma habilidade essencial para qualquer programador, permitindo a criação de
aplicações que podem armazenar e recuperar dados de forma persistente. A escolha entre arquivos de texto e
binários depende das necessidades específicas da aplicação, considerando fatores como legibilidade,
eficiência, precisão e portabilidade.
Os arquivos de texto são ideais para dados que precisam ser lidos ou editados por humanos, como arquivos
de configuração, logs e dados em formato CSV. Já os arquivos binários são mais adequados para armazenar
grandes volumes de dados estruturados, onde a eficiência e a precisão são prioritárias.
Independentemente do tipo de arquivo escolhido, é fundamental seguir boas práticas de programação, como
verificar erros, fechar arquivos adequadamente e documentar o formato dos dados. Com o domínio dessas
técnicas, o programador estará preparado para desenvolver aplicações robustas que podem persistir e
recuperar dados de forma confiável.

Referências
●​ 📖 Livros e Apostilas

○​ KERNIGHAN, B. W.; RITCHIE, D. M. C: A Linguagem de Programação Padrão ANSI. Campus.
○​ DEITEL, H. M.; DEITEL, P. J. C: Como Programar. Pearson.
○​ BACKES, A. Linguagem C: Completa e Descomplicada. Elsevier.
○​ ZIVIANI, N. Projeto de Algoritmos com Implementações em Pascal e C. Cengage Learning.

●​ 🌐 Recursos Online
○​ IC-Unicamp - Manipulação de Arquivos em C -

https://www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/aula16.pdf
○​ PUCRS - Arquivos em C - https://www.inf.pucrs.br/~pinho/LaproI/Arquivos/Arquivos.htm
○​ USP - Arquivos em C - https://www.ime.usp.br/~pf/algoritmos/aulas/io.html
○​ UFMG - Manipulação de Arquivos - http://www.decom.ufop.br/romildo/

●​ 📽 Vídeos e Cursos
○​ Curso em Vídeo - Manipulação de Arquivos em C -

https://www.youtube.com/watch?v=PkFSpFQ5l-g
○​ Programação Descomplicada - Arquivos em C -

https://www.youtube.com/watch?v=LNu-0bzxpos

Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e fontes originais.
Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores dos direitos autorais
originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informações contidas neste documento.
Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteúdo aqui apresentado.​

https://www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/aula16.pdf
https://www.inf.pucrs.br/~pinho/LaproI/Arquivos/Arquivos.htm
https://www.ime.usp.br/~pf/algoritmos/aulas/io.html
http://www.decom.ufop.br/romildo/
https://www.youtube.com/watch?v=PkFSpFQ5l-g
https://www.youtube.com/watch?v=LNu-0bzxpos

10

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA
1. 📖 Introdução

●​ Persistência de dados
●​ Diferença entre variáveis em memória x arquivos
●​ Tipos: texto e binário

2. 📂 Conceito de Arquivo e Manipulação

●​ Arquivo = coleção de dados em armazenamento secundário
●​ Identificação: nome + caminho
●​ Acesso via ponteiro / identificador
●​ Etapas da manipulação:

1.​ Abertura (fopen)
2.​ Processamento (leitura/escrita)
3.​ Fechamento (fclose)

3. 🛠️ Operações Básicas

11

Abertura

●​ fopen(nome, modo) → retorna FILE*
●​ Modos: "r", "w", "a", "r+", "w+", "a+" (+ b p/ binários)

Leitura

●​ fscanf (formatada)
●​ fgetc (caractere)
●​ fgets (linha)
●​ fread (blocos)

Escrita

●​ fprintf (formatada)
●​ fputc (caractere)
●​ fputs (string)
●​ fwrite (blocos)

Fechamento

●​ fclose(arquivo) → libera recursos e evita corrupção

4. 🔍 Texto vs. Binário

Texto

●​ Legíveis em editores
●​ Portáveis
●​ Mais espaço
●​ Conversão de números → caracteres

Binário

●​ Eficiência (menos espaço)
●​ Precisão (sem conversão)
●​ Não legíveis diretamente
●​ Menor portabilidade (endianness, tipos)
●​ Facilita acesso aleatório

5. 🎯 Manipulação Avançada

●​ fseek / ftell / rewind → controle do ponteiro
●​ feof → detectar fim do arquivo

12

Acesso

●​ Sequencial → do início ao fim
●​ Aleatório → acesso direto a registros​

6. ⚠️ Recursos Extras

●​ Tratamento de erros: perror, errno
●​ Arquivos temporários: tmpfile, tmpnam
●​ Redirecionamento I/O: stdin, stdout, stderr
●​ Bufferização: fflush, setvbuf

7. ✅ Boas Práticas

●​ Sempre verificar erros
●​ Fechar arquivos corretamente
●​ Usar nomes e extensões significativas
●​ Documentar formatos
●​ Considerar portabilidade (binários)
●​ Backups antes de alterações
●​ Funções de alto nível p/ texto, baixo nível p/ binário

8. 🏁 Conclusão

●​ Escolha texto x binário depende de:
○​ Legibilidade
○​ Eficiência
○​ Precisão
○​ Portabilidade

●​ Fundamentais para aplicações robustas e persistentes

	Arquivos Textos e Binários
	Introdução
	Conceito de Arquivos e Manipulação em Programas
	A manipulação de arquivos em programas geralmente segue um padrão comum:
	Abertura, Leitura, Escrita e Fechamento de Arquivos
	Abertura de Arquivos
	Leitura de Arquivos
	Escrita em Arquivos
	Fechamento de Arquivos
	Modos de Abertura de Arquivos

	Diferenças entre Arquivos Texto e Binário
	Arquivos de Texto
	Arquivos Binários
	Comparação Prática

	Manipulação com Ponteiros de Arquivo
	Acesso Aleatório vs. Sequencial

	Tratamento de Erros
	Arquivos Temporários
	Redirecionamento de Entrada e Saída Padrão
	Bufferização de Arquivos
	Boas Práticas na Manipulação de Arquivos
	Conclusão
	Referências
	
	
	
	
	
	
	
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

