Arquivos Textos e Binarios

11 o T 11 e T 20 OSSO 2
Conceito de Arquivos e Manipulagao em Programas..........cccceeerrrimiiissssmssssinnsssnns s sssssss s s s ssssssssssees 2
A manipulacao de arquivos em programas geralmente segue um padrao COMUM:.........cccevvvvieiieeiieeeeeeeeeenn. 2
Abertura, Leitura, Escrita € Fechamento de ArqQUIVOS..........cooiieiiiiiiiiie e e 2
Fa o= 0T =T o L= N o [ Lo L= 2
[T (B =0 LN o [ 1Yo LS 3
Yo 1 ¢= T=Y 0 10 Y o [ A0 T 4
FEChameENtO A& ATQUIVOS. ........e ittt e e ettt e e e e e e e et b et e e e e e e e s nab e e eeeeeeeeannnnees 4
Y ToTe [T 0o LR AN o= o (N = Ie [T o[ U LY 0T T 5
Diferencas entre Arquivos Texto @ BiNArio.........cccciiiiiiiiiiiiiiiiiiciccrrcirrcsss s sns s ssnnnnnnnnnnnenn e e nn e e e e e e e nennes 5
N o {8 A0 <o [T = q (o TSRO 5
N o {8 A0 E=3 = 1o =Ty o - 3 6
(00T g o=T = Tor=To I o = (o= TSP PRSPPI 6
Manipulagao com Ponteiros de ArQUIVO..........ccciiiiririricmnssssisrrrrsrsemsssssssssssrrressmassssssssssernesnnmsssssssssseesennnnnnnsnssns 6
Acesso Aleatorio VS. SEQUENCIAL...........cciiiiiiiiiiiiiiccee e naaan 7
Tratamento @ EITOS........ . s r s rr s ss s s s s e s e s ene s s s s e s e e e e e nnmasssssss s s e e e e s s nnmasssssssssernennnnnnssssssssennnsnnnnnnn 8
N o LAY o3 =Y o 0 o T =T o T 8
Redirecionamento de Entrada e Saida Padrao...........ccccccicmmmmmmmmmmmmcmecceecceeeee s s ess s ss e ss s e s s s s s s s sssssesseeees 8
BUFferizagao de AIFQUIVOS..........ccccieiiiiiisnnssnsnsnssnnssnsnnnnssnnnneannnannnanrnnr e ar e s s e e e e e e e e e e e e e aeeeeeeneaeneannnnenennennennnnsennnnes 8
Boas Praticas na Manipulagao de ArqUIVOS........ccciiiiiiiiiiiiiiiiciicc s s s s s s s s snnnnen 9
00T T 11 1= Vo 0 PSPPI 9
LY =1 = Lo - = PSS PPRTRPN 9
Anexo - Resumo Estruturado/Mapa Mental Gerado por lA...........cooooiiiiiiiiirrsssssssssssssss s snnnns 11
Introducao

O processamento de arquivos é uma parte fundamental da programacado, permitindo que os programas
armazenem e recuperem dados de forma persistente. Diferentemente das variaveis em memodria, cujos
valores sdo perdidos quando o programa termina, os arquivos permitem que os dados sejam preservados
entre diferentes execugdes do programa. Existem dois tipos principais de arquivos utilizados em programagao:
arquivos de texto e arquivos binarios, cada um com suas caracteristicas, vantagens e aplicagdes especificas.
Neste material, exploraremos os conceitos fundamentais de manipulacdo de arquivos, com foco nas
operagdes basicas como abertura, leitura, escrita e fechamento. Também discutiremos as diferengas entre
arquivos de texto e binarios, os modos de acesso disponiveis e as fungdes especificas para manipulacéo de
cada tipo de arquivo. Embora os exemplos sejam principalmente em linguagem C, os conceitos sao aplicaveis
a diversas linguagens de programacéo.


https://prettore.github.io/lectures.html

Conceito de Arquivos e Manipulagao em Programas

Um arquivo é uma colecédo de dados armazenados em um dispositivo de armazenamento secundario, como
um disco rigido, SSD ou pendrive. Do ponto de vista do sistema operacional, um arquivo € identificado por um
nome e um caminho que indica sua localizagdo no sistema de arquivos. Para os programas, um arquivo é
acessado através de um ponteiro ou identificador que serve como intermediario entre o programa e o sistema
operacional.

A manipulacdo de arquivos em programas geralmente segue um padrao
comum:

1. Abertura do arquivo: Estabelece uma conexdo entre o programa e o arquivo, especificando o modo de
acesso (leitura, escrita, etc.).

2. Processamento: Realizacdo de operacgdes de leitura e/ou escrita no arquivo.

3. Fechamento do arquivo: Encerra a conexao, liberando recursos do sistema e garantindo que todos os
dados sejam salvos corretamente.

Em linguagem C, a manipulagido de arquivos é realizada através da biblioteca padrao <stdio.h>, que fornece
funcdes como fopen(), fclose(), fread(), fwrite(), fprintf(), fscanf(), entre outras.

Abertura, Leitura, Escrita e Fechamento de Arquivos

Abertura de Arquivos

A abertura de um arquivo é realizada através da fung¢ao fopen(), que recebe como parametros o nome do
arquivo e o modo de abertura. Esta funcéo retorna um ponteiro para o tipo FILE, que sera utilizado em todas
as operagdes subsequentes com o arquivo.

Sintaxe em C:

FILE *fopen(const char *filename, const char *mode); Exemplo:

FILE *arquivo;
arquivo = fopen("dados.txt", "r"); // Abre o arquivo
"dados.txt" para leitura
if (arquivo == NULL) {
printf("Erro ao abrir o arquivo.

)
}

return 1;

E importante sempre verificar se a abertura do arquivo foi bem-sucedida, pois diversos fatores podem impedir
a abertura, como permissoées insuficientes, arquivo inexistente (no caso de leitura), ou disco cheio (no caso de
escrita).



Leitura de Arquivos

A leitura de dados de um arquivo pode ser realizada de varias formas, dependendo do tipo de dado e da
estrutura do arquivo:
1. Leitura formatada com fscanf():

int fscanf(FILE *stream, const char *format, ...); Exemplo:

int idade;
char nome[50];
fscanf(arquivo, "%s %d", nome, &idade);

2. Leitura de caracteres com fgetc():

int fgetc(FILE *stream); Exemplo:

int c;
while ((c = fgetc(arquivo)) != EOF) {
putchar(c); // Imprime o caractere lido

}

3. Leitura de linhas com fgets():

char *fgets(char *str, int n, FILE *stream); Exemplo:

char linha[100];
while (fgets(linha, sizeof(linha), arquivo) != NULL) {
printf("%s", linha); // Imprime a linha lida

}

4. Leitura de blocos de dados com fread():

size t fread(void *ptr, size_t size, size_t nmemb, FILE | Exemplo:
*stream);
struct pessoa {

char nome[50];

int idade;
|3
struct pessoa p;
fread(&p, sizeof(struct pessoa), 1, arquivo);

Escrita em Arquivos

A escrita em arquivos também pode ser realizada de varias formas:
1. Escrita formatada com fprintf():

int fprintf(FILE *stream, const char *format, ...); Exemplo:

fprintf(arquivo, "Nome: %s, Idade: %d
", "Jodo", 30);




2. Escrita de caracteres com fputc():

int fputc(int c, FILE *stream); Exemplo:
fputc('A', arquivo);

3. Escrita de strings com fputs():

int fputs(const char *str, FILE *stream); Exempilo:

fputs("Ola, mundo!", arquivo);

4. Escrita de blocos de dados com fwrite():

size_t fwrite(const void *ptr, size_t size, size t nmemb, | Exemplo:
FILE *stream); struct pessoa p = {"Maria", 25};
fwrite(&p, sizeof(struct pessoa), 1, arquivo);

Fechamento de Arquivos

Apods concluir as operagbes com um arquivo, é essencial fecha-lo usando a funcao fclose():

int fclose(FILE *stream); Exempilo:

fclose(arquivo);

O fechamento de arquivos € importante por varias razoes:

1. Libera recursos do sistema operacional.

2. Garante que todos os dados em buffer sejam efetivamente escritos no arquivo.

3. Permite que outros programas acessem o arquivo (em sistemas que implementam bloqueio de arquivos).
4. Previne corrupgao de dados.

Modos de Abertura de Arquivos

Os modos de abertura determinam as operagdes permitidas em um arquivo e como o arquivo sera tratado
durante a abertura. Os principais modos sao:

."r" - Abre um arquivo para leitura. O arquivo deve existir.

. "w" - Cria um arquivo para escrita. Se o arquivo ja existir, seu contetdo sera truncado (apagado).

."a" - Abre um arquivo para escrita no final (append). Se o arquivo nao existir, ele sera criado.

. "r+" - Abre um arquivo para leitura e escrita. O arquivo deve existir.

. "w+" - Cria um arquivo para leitura e escrita. Se o arquivo ja existir, seu conteudo serd truncado.

. "a+" - Abre um arquivo para leitura e escrita no final. Se o arquivo ndo existir, ele sera criado.

Para arquivos binarios, adiciona-se o caractere "b" ao modo (ex: "rb", "wb", "ab", etc.).

Exemplo em C:

OO, WN -~

FILE *arquivo_texto = fopen("dados.txt", "r"); /I Abre para leitura (texto)

FILE *arquivo_binario = fopen("dados.bin", "wb"); // Abre para escrita (binario)
FILE *arquivo_append = fopen("log.txt", "a"); /I Abre para append (texto)

FILE *arquivo_rw = fopen("config.txt", "r+"); /I Abre para leitura e escrita (texto)




Diferencas entre Arquivos Texto e Binario

Arquivos de Texto

Os arquivos de texto armazenam dados em formato legivel por humanos, utilizando caracteres ASCII ou
Unicode. Cada byte ou sequéncia de bytes representa um caractere, e os dados sdo organizados em linhas
separadas por caracteres especiais

Caracteristicas dos arquivos de texto:

1. Legibilidade: Podem ser abertos e editados em editores de texto simples.

2. Portabilidade: Podem ser transferidos entre diferentes sistemas, embora possam ocorrer problemas com
caracteres de fim de linha.

3. Representacao de numeros: Nimeros sdo armazenados como sequéncias de caracteres (ex: o niumero 123
€ armazenado como os caracteres '1', '2' e '3').

4. Tamanho: Geralmente ocupam mais espago que arquivos binarios equivalentes, pois cada digito de um
numero é armazenado como um caractere.

5. Processamento: A conversdao entre representacdo interna e texto pode adicionar overhead de
processamento.

Exemplo de escrita em arquivo de texto em C:

FILE *arquivo = fopen("dados.txt", "w");
fprintf(arquivo, "Nome: Joao Idade: 30 Altura: 1.75");
fclose(arquivo);

Arquivos Binarios

Os arquivos binarios armazenam dados em formato nativo da maquina, sem conversao para texto. Os bytes
sao interpretados diretamente como valores binarios, sem considerar representacdes de caracteres.
Caracteristicas dos arquivos binarios:

1. Eficiéncia: Geralmente ocupam menos espacgo e sdo processados mais rapidamente.

2. Precisao: Preservam a representacao exata dos dados, sem perdas de precisdo em conversoes.

3. Nao legiveis: Nao podem ser facilmente visualizados ou editados em editores de texto.

4. Portabilidade limitada: Podem nao ser compativeis entre diferentes arquiteturas de computadores devido a
diferencas na representacgao interna de dados (endianness, tamanho de tipos, etc.).

5. Acesso direto: Facilitam o acesso aleatério a registros de tamanho fixo.

Exemplo de escrita em arquivo binario em C:

struct pessoa {
char nome[50];
int idade;
float altura;
|3
struct pessoa p = {"Jodo", 30, 1.75};




FILE *arquivo = fopen("dados.bin", "wb");
fwrite(&p, sizeof(struct pessoa), 1, arquivo);
close(arquivo);

Comparacéao Pratica

Para ilustrar a diferenga entre arquivos de texto e binarios, considere o armazenamento de um namero inteiro,
como 12345:

- Em um arquivo de texto, seriam necessarios 5 bytes para armazenar os caracteres '1', '2', '3', '4' e '5".

- Em um arquivo binario, seriam necessarios apenas 4 bytes (assumindo um int de 32 bits), com o valor
armazenado diretamente em formato binario.

Manipulagcao com Ponteiros de Arquivo

Além das funcdes basicas de leitura e escrita, a biblioteca padrao C oferece fungdes para manipular a posi¢ao
atual no arquivo (ponteiro de arquivo):
1. fseek() - Posiciona o ponteiro de arquivo em uma posigao especifica:

int fseek(FILE *stream, long offset, int whence);

Os valores possiveis para whence sao:

- fseek(arquivo, 0, SEEK_SET); // Posiciona o ponteiro no inicio do arquivo

- fseek(arquivo, 10, SEEK_CUR); // Avanca 10 bytes a partir da posigao atual

- fseek(arquivo, -5, SEEK_END); // Posiciona o ponteiro 5 bytes antes do fim do arquivo
2. ftell() - Retorna a posicao atual do ponteiro de arquivo:

long ftell(FILE *stream); Exempilo:
long posicao = ftell(arquivo);
printf("Posicéo atual: %lId bytes
", posicao);
3. rewind() - Reposiciona o ponteiro de arquivo no inicio:
void rewind(FILE *stream); Exempilo:
rewind(arquivo); // Equivalente a fseek(arquivo, O,
SEEK_SET);
4. feof() - Verifica se o fim do arquivo foi atingido:
int feof(FILE *stream); Exempilo:

while (Ifeof(arquivo)) {
/I Processa o arquivo

}




Acesso Aleatorio vs. Sequencial

Os arquivos podem ser acessados de duas formas principais:

1. Acesso Sequencial: Os dados s&o lidos ou escritos em sequéncia, do inicio ao fim do arquivo. E o modo
mais comum para arquivos de texto.

2. Acesso Aleatdrio: Os dados podem ser acessados diretamente em qualquer posigao do arquivo, sem
necessidade de ler os dados anteriores. E particularmente atil para arquivos binarios com registros de
tamanho fixo.

Exemplo de acesso aleatério a registros em um arquivo binario:

struct pessoa {

char nome[50];

int idade;

float altura; };
/I Abre o arquivo binario
FILE *arquivo = fopen("pessoas.bin", "rb");
/l Calcula o tamanho de cada registro
size_t tamanho_registro = sizeof(struct pessoa);
/I Acessa diretamente o terceiro registro (indice 2)
fseek(arquivo, 2 * tamanho_registro, SEEK_SET);
/I Lé o registro
struct pessoa p;
fread(&p, tamanho_registro, 1, arquivo);
printf("Nome: %s, Idade: %d, Altura: %.2f
", p.nome, p.idade, p.altura);
fclose(arquivo);

Tratamento de Erros

O tratamento adequado de erros € crucial na manipulagao de arquivos. Além de verificar o retorno de fopen(),
€ importante verificar o resultado de outras operagdes:

A funcao perror() € particularmente Util, pois imprime uma mensagem descritiva do erro baseada no valor da
variavel global errno.

Arquivos Temporarios

Em algumas situagdes, € necessario criar arquivos temporarios que serdo utilizados apenas durante a
execucao do programa. A biblioteca padrao C oferece fungbes especificas para isso:
1. tmpfile() - Cria um arquivo temporario no modo "wb+":

FILE *temp = tmpfile();
if (temp !'= NULL) {
/l Usa o arquivo temporario
fclose(temp); // O arquivo é automaticamente removido ao ser fechado

}




2. tmpnam() - Gera um nome Unico para um arquivo temporario:

char nome_temp|[L_tmpnam];
if (tmpnam(nome_temp) != NULL) {
printf("Nome de arquivo temporario: %s
", nome_temp);
/I Usa o0 nome para criar um arquivo

}

Redirecionamento de Entrada e Saida Padrao

E possivel redirecionar a entrada e saida padr&o (stdin, stdout, stderr) para arquivos. A biblioteca padrdo C
define trés fluxos de arquivo que estdo sempre disponiveis:

1. stdin - Entrada padrao (geralmente o teclado)
2. stdout - Saida padrao (geralmente a tela)
3. stderr - Saida de erro padrao (geralmente a tela)

Bufferizacao de Arquivos

Por padrao, as operacgbes de arquivo em C sao bufferizadas para melhorar o desempenho. Isso significa que
os dados nao sao imediatamente escritos no disco, mas armazenados em um buffer na meméria até que seja
necessario escrevé-los (quando o buffer fica cheio, quando o arquivo é fechado, ou quando fflush() é
chamado).
A fungéo fflush() for¢a a escrita dos dados bufferizados:

e fflush(arquivo); // Forca a escrita dos dados bufferizados
E possivel controlar o modo de bufferizagdo com a fungéo setvbuf():

e setvbuf(arquivo, NULL, IONBF, 0); // Desativa a bufferizagéo

e setvbuf(arquivo, NULL, |IOLBF, BUFSIZ); // Bufferizacao por linha

e setvbuf(arquivo, NULL, IOFBF, BUFSIZ); // Bufferizagdo completa

Boas Praticas na Manipulagao de Arquivos

. Sempre verifique o resultado das operacdes de arquivo.

. Feche os arquivos apés o uso.

. Trate adequadamente os erros.

. Use nomes de arquivo significativos e extensbes apropriadas.

. Documente o formato dos arquivos, especialmente para arquivos binarios.

. Considere a portabilidade ao trabalhar com arquivos binarios.

. Faca backup de arquivos importantes antes de modifica-los.

. Use fungbes de alto nivel (fprintf, fscanf) para arquivos de texto e fungdes de baixo nivel (fread, fwrite) para
arquivos binarios.

9. Considere o uso de bibliotecas especificas para formatos complexos (XML, JSON, etc.).
10. Implemente mecanismos de recuperagao para casos de falha durante operacoes criticas.

O ~NO O WN -



Conclusao

A manipulagdo de arquivos é uma habilidade essencial para qualquer programador, permitindo a criagao de
aplicagbes que podem armazenar e recuperar dados de forma persistente. A escolha entre arquivos de texto e
binarios depende das necessidades especificas da aplicagdo, considerando fatores como legibilidade,
eficiéncia, precisao e portabilidade.

Os arquivos de texto sdo ideais para dados que precisam ser lidos ou editados por humanos, como arquivos
de configuragao, logs e dados em formato CSV. Ja os arquivos binarios sdo mais adequados para armazenar
grandes volumes de dados estruturados, onde a eficiéncia e a precisao sao prioritarias.

Independentemente do tipo de arquivo escolhido, € fundamental seguir boas praticas de programagao, como
verificar erros, fechar arquivos adequadamente e documentar o formato dos dados. Com o dominio dessas
técnicas, o programador estara preparado para desenvolver aplicagdes robustas que podem persistir e
recuperar dados de forma confiavel.

Referéncias

e [ | Livros e Apostilas
o KERNIGHAN, B. W.; RITCHIE, D. M. C: A Linguagem de Programacao Padrdo ANSI. Campus.
o DEITEL, H. M.; DEITEL, P. J. C: Como Programar. Pearson.
o BACKES, A. Linguagem C: Completa e Descomplicada. Elsevier.
o ZIVIANI, N. Projeto de Algoritmos com Implementagdes em Pascal e C. Cengage Learning.
e & Recursos Online
o IC-Unicamp - Manipulagao de Arquivos em C -
https://www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/aula16.pdf
o PUCRS - Arquivos em C - https://www.inf.pucrs.br/~pinho/Laprol/Arquivos/Arquivos.htm
o USP - Arquivos em C - https://www.ime.usp.br/~pf/algoritmos/aulas/io.html

o UFMG - Manipulagao de Arquivos - http://www.decom.ufop.br/romildo/
e %% Videos e Cursos

o Curso em Video - Manipulacao de Arquivos em C -
https://www.youtube.com/watch?v=PkFSpFQ5I-g
o Programacao Descomplicada - Arquivos em C -

https://www.youtube.com/watch?v=LNu-0bzxpos

Isencao de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagao dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais viola¢cdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagées contidas neste documento.

Ao utilizar este documento, o usudrio concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteddo aqui apresentado.


https://www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/aula16.pdf
https://www.inf.pucrs.br/~pinho/LaproI/Arquivos/Arquivos.htm
https://www.ime.usp.br/~pf/algoritmos/aulas/io.html
http://www.decom.ufop.br/romildo/
https://www.youtube.com/watch?v=PkFSpFQ5l-g
https://www.youtube.com/watch?v=LNu-0bzxpos

Anexo - Resumo Estruturado/Mapa Mental Gerado por IA

1. L Introdugéo

e Persisténcia de dados
e Diferenca entre variaveis em memoria x arquivos
e Tipos: texto e binario

10

2. Conceito de Arquivo e Manipulacao

Arquivo = coleg¢ado de dados em armazenamento secundario
Identificacdo: nome + caminho
Acesso via ponteiro / identificador
Etapas da manipulacéo:
1. Abertura (fopen)
2. Processamento (leitura/escrita)
3. Fechamento (fclose)

3. X Operacdes Basicas



Abertura

e fopen(nome, modo) — retorna FILE*

e Modos: "r", "w", "a", "r+", "w+", "a+

(+ b p/ binarios)

Leitura
e fscanf (formatada)
e fgetc (caractere)
e fgets (linha)
e fread (blocos)

Escrita
e fprintf (formatada)
e fputc (caractere)
e fputs (string)
e fwrite (blocos)

Fechamento

e fclose(arquivo) — libera recursos e evita corrupgéo

11

4. © Texto vs. Binario

Texto

Legiveis em editores

Portaveis

Mais espago

Conversao de numeros — caracteres

Binario

Eficiéncia (menos espaco)

Precisao (sem conversao)

Nao legiveis diretamente

Menor portabilidade (endianness, tipos)
Facilita acesso aleatério

5. @ Manipulagéo Avancada

o fseek / ftell / rewind — controle do ponteiro
e feof — detectar fim do arquivo



Acesso

Sequencial — do inicio ao fim
Aleatério — acesso direto a registros

12

o

Recursos Extras

Tratamento de erros: perror, errno
Arquivos temporarios: tmpfile, tmpnam
Redirecionamento I/O: stdin, stdout, stderr
Bufferizagao: fflush, setvbuf

7. 74 Boas Praticas

Sempre verificar erros

Fechar arquivos corretamente

Usar nomes e extensodes significativas

Documentar formatos

Considerar portabilidade (binarios)

Backups antes de alteragdes

Funcgdes de alto nivel p/ texto, baixo nivel p/ binario

8. & Conclus3do

Escolha texto x binario depende de:

o Legibilidade
o Eficiéncia
o Precisao

o Portabilidade
Fundamentais para aplicagdes robustas e persistentes



	Arquivos Textos e Binários 
	Introdução 
	Conceito de Arquivos e Manipulação em Programas 
	A manipulação de arquivos em programas geralmente segue um padrão comum: 
	Abertura, Leitura, Escrita e Fechamento de Arquivos 
	Abertura de Arquivos 
	Leitura de Arquivos 
	Escrita em Arquivos 
	Fechamento de Arquivos 
	Modos de Abertura de Arquivos 


	Diferenças entre Arquivos Texto e Binário 
	Arquivos de Texto 
	Arquivos Binários 
	Comparação Prática 

	Manipulação com Ponteiros de Arquivo 
	Acesso Aleatório vs. Sequencial 

	Tratamento de Erros 
	Arquivos Temporários 
	Redirecionamento de Entrada e Saída Padrão 
	Bufferização de Arquivos 
	Boas Práticas na Manipulação de Arquivos 
	Conclusão 
	Referências 
	 
	 
	 
	 
	 
	 
	 
	Anexo - Resumo Estruturado/Mapa Mental Gerado por IA 

