
1

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de conteúdos bibliográficos
disponíveis gratuitamente na Internet.
Recursividade
Introdução..1
Conceito de Chamada Recursiva.. 1

A estrutura básica de uma função recursiva inclui:...2
Casos Base e Recursão Infinita.. 2

Para evitar a recursão infinita, é essencial:...2
Tipos de Recursão.. 3
Pilha de Execução e Recursão.. 3
Comparação com Soluções Iterativas.. 4

Aplicações Clássicas da Recursão... 5
Otimização de Recursão...6
Limitações e Cuidados com Recursão... 6
Recursão e Estruturas de Dados Recursivas.. 7
Recursão em Diferentes Paradigmas de Programação.. 7
Boas Práticas no Uso de Recursão...7
Conclusão..7
Referências..8

Introdução
A recursividade é um conceito fundamental na ciência da computação e na programação, representando uma
técnica poderosa para resolver problemas complexos de forma elegante e concisa. Em essência, a
recursividade ocorre quando uma função chama a si mesma para resolver versões menores do mesmo
problema, até atingir um caso simples que pode ser resolvido diretamente. Este princípio está profundamente
enraizado tanto na matemática quanto na computação, e seu domínio é essencial para qualquer programador
que busque desenvolver soluções eficientes e elegantes.
Neste material, exploraremos o conceito de recursividade, seus fundamentos teóricos, implementações
práticas, vantagens, limitações e aplicações. Analisaremos como a recursividade se compara com
abordagens iterativas e discutiremos as considerações importantes ao implementar soluções recursivas.
Embora os exemplos sejam principalmente em linguagem C, os conceitos são aplicáveis a qualquer
linguagem de programação que suporte funções recursivas.

Conceito de Chamada Recursiva
Uma função recursiva é aquela que chama a si mesma durante sua execução. Essa auto-referência permite
que problemas complexos sejam decompostos em instâncias menores e mais simples do mesmo problema,
seguindo o paradigma "dividir para conquistar". Cada chamada recursiva trabalha com uma versão reduzida

https://prettore.github.io/lectures.html

2

do problema original, aproximando-se gradualmente de um caso base que pode ser resolvido diretamente,
sem recursão adicional.

A estrutura básica de uma função recursiva inclui:
1. Caso base (ou condição de parada): Define quando a recursão deve terminar, retornando um resultado
direto sem novas chamadas recursivas.​
2. Caso recursivo: Define como o problema maior é decomposto em problemas menores, incluindo uma ou
mais chamadas à própria função.
Exemplo simples em C - cálculo do fatorial:

int fatorial(int n) {​
 // Caso base​
 if (n == 0 || n == 1) {​
 return 1;​
 }​
 // Caso recursivo​
 else {​
 return n * fatorial(n - 1);​
 }​
}

​
Neste exemplo, o fatorial de n (n!) é calculado como n multiplicado pelo fatorial de (n-1). O caso base ocorre
quando n é 0 ou 1, onde o fatorial é definido como 1.

Casos Base e Recursão Infinita
O caso base é o elemento mais crítico de qualquer função recursiva, pois garante que a recursão
eventualmente terminará. Sem um caso base adequado, ou se o caso base nunca for alcançado, a função
entrará em recursão infinita, consumindo cada vez mais memória até causar um estouro de pilha (stack
overflow). Exemplo de recursão infinita (problemática):

int recursao_infinita(int n) {​
 // Sem caso base ou caso base inalcançável​
 return n + recursao_infinita(n - 1);​
}

​
Esta função nunca terminará, pois não há condição que interrompa as chamadas recursivas.

Para evitar a recursão infinita, é essencial:
1. Definir claramente o caso base.​
2. Garantir que cada chamada recursiva se aproxime do caso base.​
3. Verificar se o caso base será sempre alcançado eventualmente.
Exemplo corrigido:

3

int soma_ate_zero(int n) {​
 // Caso base​
 if (n <= 0) {​
 return 0;​
 }​
 // Caso recursivo​
 else {​
 return n + soma_ate_zero(n - 1);​
 }​
}

​
Neste exemplo, a função soma todos os números inteiros de n até 1. O caso base (n <= 0) garante que a
recursão terminará.

Tipos de Recursão
Existem diferentes formas de implementar a recursão, cada uma com características e aplicações específicas:
1. Recursão Direta: Quando uma função chama diretamente a si mesma.
2. Recursão Indireta: Quando uma função A chama uma função B, que por sua vez chama a função A,
formando um ciclo.
3. Recursão de Cauda: Quando a chamada recursiva é a última operação executada pela função, não
havendo mais operações pendentes após o retorno da chamada recursiva.
A recursão de cauda é particularmente importante porque muitos compiladores podem otimizá-la,
transformando-a em um loop iterativo, evitando o overhead de múltiplas chamadas de função.
4. Recursão Múltipla: Quando uma função faz múltiplas chamadas recursivas a si mesma.

int fibonacci(int n) {​
 if (n <= 1) {​
 return n;​
 }​
 else {​
 return fibonacci(n - 1) + fibonacci(n - 2);​
 }​
}

​
Neste exemplo da sequência de Fibonacci, cada chamada recursiva gera duas novas chamadas, resultando
em uma árvore de recursão.

Pilha de Execução e Recursão
Para entender completamente a recursão, é essencial compreender como as chamadas de função são
gerenciadas pelo sistema através da pilha de execução (call stack). Quando uma função é chamada, o
sistema cria um novo registro de ativação (activation record) na pilha, contendo:

4

1. Parâmetros da função​
2. Variáveis locais​
3. Endereço de retorno (para onde o programa deve voltar após a função terminar)​
4. Outros dados de controle
Cada chamada recursiva adiciona um novo registro de ativação à pilha. Quando uma função atinge seu caso
base e retorna, seu registro de ativação é removido da pilha, e a execução continua a partir do ponto onde a
chamada foi feita.
Exemplo de rastreamento da pilha para o cálculo de fatorial(4):
```​
Chamada: fatorial(4)​
  Verifica: 4 != 0 e 4 != 1​
  Calcula: 4 * fatorial(3)​
    Chamada: fatorial(3)​
      Verifica: 3 != 0 e 3 != 1​
      Calcula: 3 * fatorial(2)​
        Chamada: fatorial(2)​
          Verifica: 2 != 0 e 2 != 1​
          Calcula: 2 * fatorial(1)​
            Chamada: fatorial(1)​
              Verifica: 1 == 1​
              Retorna: 1​
          Retorna: 2 * 1 = 2​
      Retorna: 3 * 2 = 6​
  Retorna: 4 * 6 = 24​
Resultado final: 24​
``` 
Este rastreamento mostra como a pilha cresce com cada chamada recursiva e depois diminui à medida que
as funções retornam.

Comparação com Soluções Iterativas
Muitos problemas que podem ser resolvidos recursivamente também podem ser abordados de forma iterativa,
usando estruturas de repetição como for ou while. A escolha entre uma abordagem recursiva ou iterativa
depende de vários fatores:
Vantagens da recursão:​
1. Código mais limpo e elegante para certos problemas​
2. Solução mais natural para problemas inerentemente recursivos​
3. Facilita a implementação de algoritmos "dividir para conquistar"
Vantagens da iteração:​
1. Geralmente mais eficiente em termos de memória​
2. Evita o risco de estouro de pilha​
3. Frequentemente mais rápida em termos de tempo de execução
Exemplo comparativo - Fatorial:

5

Versão recursiva:
int fatorial_recursivo(int n) {​
 if (n == 0 || n == 1) {​
 return 1;​
 }​
 else {​
 return n * fatorial_recursivo(n - 1);​
 }​
}

Versão iterativa:​
​
int fatorial_iterativo(int n) {​
 int resultado = 1;​
 for (int i = 2; i <= n; i++) {​
 resultado *= i;​
 }​
 return resultado;​
}

Exemplo comparativo - Fibonacci:

Versão recursiva (ineficiente):​
​
int fibonacci_recursivo(int n) {​
 if (n <= 1) {​
 return n;​
 }​
 else {​
 return fibonacci_recursivo(n - 1) +
fibonacci_recursivo(n - 2);​
 }​
}

Versão iterativa:​
​
int fibonacci_iterativo(int n) {​
 if (n <= 1) {​
 return n;​
 }​
 ​
 int a = 0, b = 1, c;​
 for (int i = 2; i <= n; i++) {​
 c = a + b;​
 a = b;​
 b = c;​
 }​
 return b;​
}

A versão recursiva de Fibonacci é notoriamente ineficiente devido à duplicação de cálculos. Para n = 5,
fibonacci_recursivo(5) calcula fibonacci_recursivo(3) duas vezes e fibonacci_recursivo(2) três vezes.

Aplicações Clássicas da Recursão
A recursão é particularmente útil em diversos problemas clássicos da ciência da computação:
1. Cálculo de Fatorial
2. Sequência de Fibonacci
3. Torre de Hanói
4. Algoritmos de Busca Recursivos
5. Algoritmos de Ordenação Recursivos (Merge Sort, Quick Sort)
6. Percurso em Estruturas de Dados Recursivas
7. Problemas de Backtracking (Problema das N-Rainhas)

6

Otimização de Recursão
Embora a recursão ofereça soluções elegantes, ela pode ser ineficiente em certos casos. Existem técnicas
para otimizar funções recursivas:
1. Memoização: Armazenar resultados de chamadas anteriores para evitar recálculos.

●​ Exemplo - Fibonacci com memoização:
2. Recursão de Cauda: Reescrever a função para que a chamada recursiva seja a última operação.

●​ Exemplo - Fatorial com recursão de cauda:
Muitos compiladores modernos otimizam automaticamente a recursão de cauda, transformando-a em um loop
iterativo.
3. Programação Dinâmica: Combinar memoização com uma abordagem bottom-up.
Exemplo - Fibonacci com programação dinâmica:

int fibonacci_dp(int n) {​
 int dp[n+1];​
 dp[0] = 0;​
 dp[1] = 1;​
 ​
 for (int i = 2; i <= n; i++) {​
 dp[i] = dp[i-1] + dp[i-2];​
 }​
 ​
 return dp[n];​
}

Limitações e Cuidados com Recursão
Apesar de suas vantagens, a recursão apresenta algumas limitações importantes:
1. Estouro de Pilha (Stack Overflow): Cada chamada recursiva consome espaço na pilha. Se a profundidade
da recursão for muito grande, pode ocorrer um estouro de pilha.
2. Overhead de Chamadas de Função: Cada chamada recursiva envolve o custo de criar um novo registro de
ativação, salvar o contexto atual e restaurá-lo posteriormente.
3. Duplicação de Cálculos: Em recursões múltiplas sem memoização, o mesmo subproblema pode ser
resolvido repetidamente.
Para mitigar esses problemas:
1. Limite a profundidade da recursão.​
2. Use técnicas de otimização como memoização e recursão de cauda.​
3. Considere reescrever funções recursivas críticas usando abordagens iterativas.​
4. Aumente o tamanho da pilha quando necessário (em ambientes que permitem isso).

7

Recursão e Estruturas de Dados Recursivas
Algumas estruturas de dados são inerentemente recursivas em sua definição, tornando a recursão a
abordagem natural para manipulá-las:
1. Listas Ligadas
2. Árvores
3. Grafos

Recursão em Diferentes Paradigmas de Programação
A recursão é utilizada em diversos paradigmas de programação, com algumas diferenças importantes:
1. Programação Funcional: A recursão é um conceito central, frequentemente preferida sobre loops iterativos.
Linguagens como Haskell e Scheme incentivam o uso de recursão e otimizam automaticamente a recursão de
cauda.
2. Programação Orientada a Objetos: A recursão é usada principalmente para percorrer estruturas de dados
hierárquicas, como árvores de componentes em interfaces gráficas.
3. Programação Imperativa: A recursão é uma ferramenta disponível, mas frequentemente substituída por
abordagens iterativas por razões de desempenho.

Boas Práticas no Uso de Recursão
Para utilizar a recursão de forma eficaz e segura:
1. Identifique claramente o caso base e garanta que ele seja alcançável.​
2. Certifique-se de que cada chamada recursiva se aproxime do caso base.​
3. Analise a complexidade de tempo e espaço da solução recursiva.​
4. Use memoização para evitar recálculos em recursões múltiplas.​
5. Considere a recursão de cauda para funções que podem ser otimizadas.​
6. Teste com casos extremos para verificar limites de profundidade.​
7. Documente o funcionamento da recursão para facilitar a manutenção.​
8. Compare com soluções iterativas para avaliar trade-offs de desempenho.

Conclusão
A recursão é uma técnica poderosa e elegante para resolver problemas complexos, especialmente aqueles
que podem ser naturalmente decompostos em subproblemas menores e similares. Ela oferece uma
abordagem intuitiva para muitos algoritmos fundamentais na ciência da computação, como ordenação, busca
e percurso em estruturas de dados hierárquicas.
No entanto, a recursão não é uma solução universal. Ela vem com custos em termos de uso de memória e
potencial overhead de desempenho. Em muitos casos, soluções iterativas podem ser mais eficientes,
especialmente para problemas com grande volume de dados ou restrições de recursos.
O programador eficiente deve entender tanto as vantagens quanto as limitações da recursão, sabendo
quando aplicá-la e como otimizá-la quando necessário. Com o conhecimento adequado das técnicas de

8

otimização, como memoização, recursão de cauda e programação dinâmica, é possível aproveitar a elegância
da recursão sem sacrificar significativamente o desempenho.
Dominar a recursão não apenas amplia o repertório de técnicas de programação disponíveis, mas também
desenvolve uma forma de pensar que facilita a abordagem de problemas complexos através da
decomposição em partes mais simples - uma habilidade valiosa que transcende a programação e se aplica à
resolução de problemas em geral.

Referências
●​ 📖 Livros e Apostilas

○​ CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática.
Elsevier.

○​ SEDGEWICK, R.; WAYNE, K. Algorithms. Addison-Wesley.
○​ KNUTH, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms.

Addison-Wesley.
○​ KERNIGHAN, B. W.; RITCHIE, D. M. C: A Linguagem de Programação Padrão ANSI. Campus.
○​ DEITEL, H. M.; DEITEL, P. J. C: Como Programar. Pearson.

●​ 🌐 Recursos Online
○​ IC-Unicamp - Recursão - https://ic.unicamp.br/~mc102/aulas/aula12.pdf
○​ USP - Recursão - https://www.ime.usp.br/~pf/algoritmos/aulas/recu.html
○​ MIT OpenCourseWare - Recursion -

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-
computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-
dictionaries/

●​ 📽 Vídeos e Cursos
○​ Curso em Vídeo - Recursividade - https://www.youtube.com/watch?v=p7Wka25AcvE
○​ Programação Descomplicada - Recursão -

https://programacaodescomplicada.wordpress.com/2012/09/19/aula-51-recursao/
○​ MIT OpenCourseWare - Recursion -

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-
computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-
dictionaries/

Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e fontes originais.
Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores dos direitos autorais
originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informações contidas neste documento.
Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteúdo aqui apresentado.​

https://ic.unicamp.br/~mc102/aulas/aula12.pdf
https://www.ime.usp.br/~pf/algoritmos/aulas/recu.html
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://www.youtube.com/watch?v=p7Wka25AcvE
https://programacaodescomplicada.wordpress.com/2012/09/19/aula-51-recursao/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/

\o'e’l,
c'v-g e>RK 1 aa#pe 4 r\teC .

CD lê'1--’\ ,ra

'c4hô:a:íóú;.-o’ ; Áà–5:;ãélb
eR é ivcÊ:"r, c- ?*i1,' "É~#41

1 IA/d j;tt;fã': F,+Fb <= o&nh4 ar.

P J y 4 : f;;}rf}&i /3 :11:1l17;4f

i[2)1r 1 L & V i nJ 7;25;::b1) r c#1
aTIva'h a C+so 9 BSe_-\

f7sffldto 7\ n
-CQrã -e,wc
.-c 45-o QÉC,\i Ail JO

m :4 + 1 1f r 4 1

qI?o J b(

n6éi lila–'

ZtY4,b :

.Def ,VI„ r Tb _Px
cn' S 6 4r»J\ IMq c[
CB_aüL4Aç#1-tI'

1

a::tb à; \
JA/4 aaJA'o 1 v lsw €

CON Qa\S T 6

ba(WIde pAiia

aDA %xl
Ir &1.9 S gt \

'C f(i Or

1%IQ. I [fa1cc. 1 W,„;

Ge$çTdC 1,n'
PfL-14 De

(kai ;d
1

};mTV;iI-
3ôÔç

- LI: r/ 4S L.c.on\
Ai var{cr, 6 A 4r4'

'-qS o A pj peaçd
É,D. Hlc„,êAÜJic tJ

21:mxn v 4}{8-
-P4Mb,__f J__z_Gg
- \J nA\ nk:1\ LG(4l5

i -eNo .hTünNq
WnuFTÕBI«GTI

(a,TQçÜ}: /- >ato Q(191

Tü=RãlwfÚJBm
_.:_QnMq4ãi{Mtô8 ,7 M_._0_çxôüAa_)nm-J1€-_m 8

ni) vpLIC hSt Dc CaLe JCb\ - /;VA,\tMTÍ+r'. O TaN-. PII'HI}

=0 jaR{éGvü_vEleü\IrOn CAN
F.GçyÂ&,a Gvt\ TI(AS

:@ 64\+ç hQ De CB«„\D”S]
TiTan
\ 4,c,+'/ ç4/el
-' GLq&ad

\:9' 'p'

Ph-Ib

f:
*<---/ r

,Ü.
3:41:r–\19

' CHo-.4%Ç ApfÁ,4\ML/6
11 (deEx-'.- -ÍejT€ c4s i C /TRt +\0

1 P/«q„.r'tt'„ l;' „,q
i De P4üFüNO iO+De

+ _e_€ ç9. rlsLvs X=óC-dl,–fühoh

_f „ (_A/_l1 _fiat A/)-1 -

Sq__C .8f< L_ 1 --ÃÉ-(„'Â')1
R_9_@##___/y 'JÇ

Ie_7_agv$___4_'/_3

&@&l_
fLt-iGIM b ;:1„„,1* r :„t „'-:$ G=,1 ;

lx /~/)À 1–;) ÉQ, 1?

C_;4_+ B }

43 6;
t\ =c ;

1
p,eT_Q.ANe__ 8)

S

	Recursividade
	Introdução
	Conceito de Chamada Recursiva
	A estrutura básica de uma função recursiva inclui:
	Casos Base e Recursão Infinita
	Para evitar a recursão infinita, é essencial:

	Tipos de Recursão
	Pilha de Execução e Recursão
	Comparação com Soluções Iterativas
	Aplicações Clássicas da Recursão

	Otimização de Recursão
	Limitações e Cuidados com Recursão
	Recursão e Estruturas de Dados Recursivas
	Recursão em Diferentes Paradigmas de Programação
	Boas Práticas no Uso de Recursão
	Conclusão
	Referências

