Recursividade

11 o T 11 e T 20 OSSO 1
Conceito de Chamada RECUISIVA.......c... . i s s e e s e s e s s s s s e e e s e e rmmmasss s e s e e e e e s nnmnssssssssernnnns 1
A estrutura basica de uma fungao recursiva iNCIUI: ... 2
Casos Base € ReCUIrs80 INFINILA...........ooiiiiiiiii e e e e e e e e e e et eeeeeeeeaanns 2
Para evitar a recursao infinita, € ©SSENCIALcoou i et 2
QLI 2o E53e [0 3T 2 1T = o N 3
Pilha de EXECUGA0 € RECUISAO0.......cciiiiueeieiiiiiniisss s e e b e e n e e e e e e e e nn R e e e e e e naan 3
Comparagcao com SoluGoes Iterativas........cccccoiimiinir e ———————————————— 4
Aplicactes ClIAsSiCas da RECUISA0.ccciiiiii e e e e s s s eseeeeseeeeeeeeeeeeeeeeeeeeeeeeeaaaeaeeees 5
(01710 0 T2=To= T 3 o [0 2 L-Y o1] 3 T T 6
Limitacdes € Cuidados COM RECUISAO0...........cciiiiiiiiiiiiiiiiiiiiii s s snes 6
Recursdo e Estruturas de Dados RECUISIVAs........cccccoiirriiriiinsisssi s mmmmmmmmmm e nenn e e e ne e e e nr e e neennes 7
Recursdao em Diferentes Paradigmas de Programagao...........ccccccrrriiniinninmmnnsinnnnsssssssss s sssssssssssss s ssssssssssnes 7
Boas Praticas N0 USO de RECUISA0.........cciiiimmimiiiiiinsssis s s sssss s s sss s s s s amnn s s s s s nnnnan 7
L0 o T 0 T 11 T3 T 7
=Y =1 = Lo - = USSP 8
Introducao

A recursividade é um conceito fundamental na ciéncia da computagéo e na programacgao, representando uma
técnica poderosa para resolver problemas complexos de forma elegante e concisa. Em esséncia, a
recursividade ocorre quando uma funcido chama a si mesma para resolver versées menores do mesmo
problema, até atingir um caso simples que pode ser resolvido diretamente. Este principio esta profundamente
enraizado tanto na matematica quanto na computagao, e seu dominio € essencial para qualquer programador
que busque desenvolver solugdes eficientes e elegantes.

Neste material, exploraremos o conceito de recursividade, seus fundamentos teéricos, implementacdes
praticas, vantagens, limitagdes e aplicacbes. Analisaremos como a recursividade se compara com
abordagens iterativas e discutiremos as consideragdes importantes ao implementar solugdes recursivas.
Embora os exemplos sejam principalmente em linguagem C, os conceitos sado aplicaveis a qualquer
linguagem de programagéao que suporte fungdes recursivas.

Conceito de Chamada Recursiva

Uma fungédo recursiva é aquela que chama a si mesma durante sua execugdo. Essa auto-referéncia permite
gue problemas complexos sejam decompostos em instancias menores e mais simples do mesmo problema,
seguindo o paradigma "dividir para conquistar". Cada chamada recursiva trabalha com uma versao reduzida

https://prettore.github.io/lectures.html

do problema original, aproximando-se gradualmente de um caso base que pode ser resolvido diretamente,
sem recursdo adicional.

A estrutura basica de uma funcao recursiva inclui:

1. Caso base (ou condi¢do de parada): Define quando a recursdo deve terminar, retornando um resultado
direto sem novas chamadas recursivas.

2. Caso recursivo: Define como o problema maior é decomposto em problemas menores, incluindo uma ou
mais chamadas a propria fungao.

Exemplo simples em C - calculo do fatorial:

int fatorial(int n) {
/I Caso base
if(n==01n==1){
return 1;
}
/I Caso recursivo
else {
return n * fatorial(n - 1);
}
}

Neste exemplo, o fatorial de n (n!) € calculado como n multiplicado pelo fatorial de (n-1). O caso base ocorre
quando n é 0 ou 1, onde o fatorial é definido como 1.

Casos Base e Recursao Infinita

O caso base é o elemento mais critico de qualquer fungao recursiva, pois garante que a recursao
eventualmente terminara. Sem um caso base adequado, ou se o caso base nunca for alcangcado, a funcéo
entrara em recursao infinita, consumindo cada vez mais memoéria até causar um estouro de pilha (stack
overflow). Exemplo de recursao infinita (problematica):

int recursao_infinita(int n) {
/I Sem caso base ou caso base inalcangavel
return n + recursao_infinita(n - 1);

}

Esta funcdo nunca terminara, pois ndo ha condicdo que interrompa as chamadas recursivas.

Para evitar a recurséo infinita, € essencial:

1. Definir claramente o caso base.

2. Garantir que cada chamada recursiva se aproxime do caso base.
3. Verificar se o caso base sera sempre alcangado eventualmente.
Exemplo corrigido:

int soma_ate_zero(int n) {
/I Caso base
if (n <=0){
return O;
}
/I Caso recursivo
else {
return n + soma_ate_zero(n - 1);

}

}

Neste exemplo, a funcdo soma todos os numeros inteiros de n até 1. O caso base (n <= 0) garante que a
recursao terminara.

Tipos de Recursao

Existem diferentes formas de implementar a recursdo, cada uma com caracteristicas e aplica¢des especificas:
1. Recurséo Direta: Quando uma funcdo chama diretamente a si mesma.

2. Recursao Indireta: Quando uma fungdo A chama uma fungdo B, que por sua vez chama a fungéo A,
formando um ciclo.

3. Recursao de Cauda: Quando a chamada recursiva € a ultima operagdo executada pela fungdo, nao
havendo mais operag¢des pendentes apds o retorno da chamada recursiva.

A recursdo de cauda ¢é particularmente importante porque muitos compiladores podem otimiza-la,
transformando-a em um loop iterativo, evitando o overhead de multiplas chamadas de funcao.

4. Recursao Multipla: Quando uma fungao faz multiplas chamadas recursivas a si mesma.

int fibonacci(int n) {
if (n<=1){
return n;
}
else {
return fibonacci(n - 1) + fibonacci(n - 2);
}
}

Neste exemplo da sequéncia de Fibonacci, cada chamada recursiva gera duas novas chamadas, resultando
em uma arvore de recursao.

Pilha de Execucao e Recursao

Para entender completamente a recursdo, é essencial compreender como as chamadas de funcédo sao
gerenciadas pelo sistema através da pilha de execugéo (call stack). Quando uma fungdo é chamada, o
sistema cria um novo registro de ativagao (activation record) na pilha, contendo:

1. Parametros da funcéao

2. Variaveis locais

3. Endereco de retorno (para onde o programa deve voltar apds a fungao terminar)

4. Outros dados de controle

Cada chamada recursiva adiciona um novo registro de ativagédo a pilha. Quando uma fungao atinge seu caso
base e retorna, seu registro de ativacdo € removido da pilha, e a execugdo continua a partir do ponto onde a
chamada foi feita.

Exemplo de rastreamento da pilha para o célculo de fatorial(4):

Chamada: fatorial(4)
Verifica:41=0e 4 1=1
Calcula: 4 * fatorial(3)

Chamada: fatorial(3)
Verifica:3!1=0e 3!=1
Calcula: 3 * fatorial(2)

Chamada: fatorial(2)
Verifica: 21=0e 2 1=1
Calcula: 2 * fatorial(1)
Chamada: fatorial(1)
Verifica: 1 ==
Retorna: 1
Retorna: 2 *1=2
Retorna: 3*2=6
Retorna: 4 *6 = 24
Resultado final: 24

Este rastreamento mostra como a pilha cresce com cada chamada recursiva e depois diminui a medida que
as funcbes retornam.

Comparacao com Solucdes lterativas

Muitos problemas que podem ser resolvidos recursivamente também podem ser abordados de forma iterativa,
usando estruturas de repeticdo como for ou while. A escolha entre uma abordagem recursiva ou iterativa
depende de varios fatores:

Vantagens da recursao:

1. Codigo mais limpo e elegante para certos problemas

2. Solugdo mais natural para problemas inerentemente recursivos

3. Facilita a implementacéao de algoritmos "dividir para conquistar"

Vantagens da iteracao:

1. Geralmente mais eficiente em termos de meméria

2. Evita o risco de estouro de pilha

3. Frequentemente mais rapida em termos de tempo de execugao

Exemplo comparativo - Fatorial:

Verséo recursiva: Verséo iterativa:
int fatorial_recursivo(int n) {
if(n==0]n==1){ int fatorial_iterativo(int n) {
return 1; int resultado = 1;
} for (inti=2;i<=n;i++){
else { resultado *= i;
return n * fatorial_recursivo(n - 1); }
} return resultado;
} }

Exemplo comparativo - Fibonacci:

Versao recursiva (ineficiente): Versao iterativa:
int fibonacci_recursivo(int n) { int fibonacci_iterativo(int n) {
if (n<=1){ if (n<=1){
return n; return n;
} }
else {
return fibonacci_recursivo(n - 1) + inta=0,b=1,c;
fibonacci_recursivo(n - 2); for (inti=2;i<=n;i++) {
} c=a+b;
} a=b;
b=c;
}
return b;
}

A versao recursiva de Fibonacci é notoriamente ineficiente devido a duplicacido de calculos. Para n = 5,
fibonacci_recursivo(5) calcula fibonacci_recursivo(3) duas vezes e fibonacci_recursivo(2) trés vezes.

Aplicacdes Classicas da Recursao

A recursdo é particularmente util em diversos problemas classicos da ciéncia da computacgao:
1. Calculo de Fatorial

2. Sequéncia de Fibonacci

3. Torre de Handi

4. Algoritmos de Busca Recursivos

5. Algoritmos de Ordenacao Recursivos (Merge Sort, Quick Sort)

6. Percurso em Estruturas de Dados Recursivas

7. Problemas de Backtracking (Problema das N-Rainhas)

Otimizacao de Recursao

Embora a recursao oferega solugbes elegantes, ela pode ser ineficiente em certos casos. Existem técnicas
para otimizar fungbes recursivas:
1. Memoizacgao: Armazenar resultados de chamadas anteriores para evitar recalculos.
e Exemplo - Fibonacci com memoizagéo:
2. Recursao de Cauda: Reescrever a fungao para que a chamada recursiva seja a ultima operagéao.
e Exemplo - Fatorial com recursao de cauda:
Muitos compiladores modernos otimizam automaticamente a recursido de cauda, transformando-a em um loop
iterativo.
3. Programacao Dindmica: Combinar memoizagdo com uma abordagem bottom-up.
Exemplo - Fibonacci com programacéao dinamica:

int fibonacci_dp(int n) {

int dp[n+1];
dp[0] = O;
dp[1] = 1;

for (inti=2;i<=n;i++) {
dpfi] = dp[i-1] + dp[i-2];
}

return dp[n];

Limitagcdes e Cuidados com Recursao

Apesar de suas vantagens, a recursdo apresenta algumas limitagdes importantes:

1. Estouro de Pilha (Stack Overflow): Cada chamada recursiva consome espag¢o na pilha. Se a profundidade
da recursao for muito grande, pode ocorrer um estouro de pilha.

2. Overhead de Chamadas de Fungao: Cada chamada recursiva envolve o custo de criar um novo registro de
ativacdo, salvar o contexto atual e restaura-lo posteriormente.

3. Duplicacdo de Calculos: Em recursbes multiplas sem memoizagdo, o0 mesmo subproblema pode ser
resolvido repetidamente.

Para mitigar esses problemas:

1. Limite a profundidade da recursao.

2. Use técnicas de otimizagdo como memoizacéao e recursido de cauda.

3. Considere reescrever fungdes recursivas criticas usando abordagens iterativas.

4. Aumente o tamanho da pilha quando necessario (em ambientes que permitem isso).

Recursao e Estruturas de Dados Recursivas

Algumas estruturas de dados sdo inerentemente recursivas em sua definicdo, tornando a recursao a
abordagem natural para manipula-las:

1. Listas Ligadas

2. Arvores

3. Grafos

Recursao em Diferentes Paradigmas de Programacao

A recursao é utilizada em diversos paradigmas de programacao, com algumas diferengas importantes:

1. Programacgao Funcional: A recursao € um conceito central, frequentemente preferida sobre loops iterativos.
Linguagens como Haskell e Scheme incentivam o uso de recurs&o e otimizam automaticamente a recursdo de
cauda.

2. Programacgéao Orientada a Objetos: A recursdo é usada principalmente para percorrer estruturas de dados
hierarquicas, como arvores de componentes em interfaces graficas.

3. Programacao Imperativa: A recursao € uma ferramenta disponivel, mas frequentemente substituida por
abordagens iterativas por razdes de desempenho.

Boas Praticas no Uso de Recursao

Para utilizar a recursédo de forma eficaz e segura:

. Identifique claramente o caso base e garanta que ele seja alcancavel.

. Certifique-se de que cada chamada recursiva se aproxime do caso base.
. Analise a complexidade de tempo e espago da solucao recursiva.

. Use memoizacé&o para evitar recalculos em recursdes multiplas.

. Considere a recursao de cauda para fungdes que podem ser otimizadas.
. Teste com casos extremos para verificar limites de profundidade.

. Documente o funcionamento da recursao para facilitar a manutencéo.

. Compare com solucdes iterativas para avaliar trade-offs de desempenho.

0O ~NO Ok, WN -

Conclusao

A recursao é uma técnica poderosa e elegante para resolver problemas complexos, especialmente aqueles
que podem ser naturalmente decompostos em subproblemas menores e similares. Ela oferece uma
abordagem intuitiva para muitos algoritmos fundamentais na ciéncia da computagao, como ordenacéo, busca
e percurso em estruturas de dados hierarquicas.

No entanto, a recursdo ndo é uma solugéo universal. Ela vem com custos em termos de uso de memoria e
potencial overhead de desempenho. Em muitos casos, solucbes iterativas podem ser mais eficientes,
especialmente para problemas com grande volume de dados ou restrigdes de recursos.

O programador eficiente deve entender tanto as vantagens quanto as limitagdes da recursdo, sabendo
quando aplica-la e como otimiza-la quando necessario. Com o conhecimento adequado das técnicas de

otimizagdo, como memoizagao, recursao de cauda e programagao dindmica, é possivel aproveitar a elegancia
da recursao sem sacrificar significativamente o desempenho.

Dominar a recursdo nao apenas amplia o repertdrio de técnicas de programacao disponiveis, mas também
desenvolve uma forma de pensar que facilita a abordagem de problemas complexos através da
decomposicao em partes mais simples - uma habilidade valiosa que transcende a programacgao e se aplica a
resolugédo de problemas em geral.

Referéncias

e [| Livros e Apostilas
o CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Pratica.
Elsevier.
SEDGEWICK, R.; WAYNE, K. Algorithms. Addison-Wesley.
KNUTH, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison-Wesley.
o KERNIGHAN, B. W.; RITCHIE, D. M. C: A Linguagem de Programacao Padrao ANSI. Campus.
o DEITEL, H. M.; DEITEL, P. J. C: Como Programar. Pearson.
e & Recursos Online
o IC-Unicamp - Recursao - https://ic.unicamp.br/~mc102/aulas/aulal2.pdf
o USP - Recursao - https://www.ime.usp.br/~pf/algoritmos/aulas/recu.html
o MIT OpenCourseWare - Recursion -
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-

computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-
dictionaries/

e %% Videos e Cursos
o Curso em Video - Recursividade - MWMMMLLM

o Programacéo Descomplicada Recurséo -
https://programacaodescomplicada.wordpress.com/2012/09/19/aula-51-recursao/
o MIT OpenCourseWare - Recursion -

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-

computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-
dictionaries/

Isengéo de Responsabilidade:

Os autores deste documento néo reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento foi elaborado para fins
educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e fontes originais.

Qualquer utilizagdo comercial ou distribuicdo do contetido aqui compilado deve ser feita com a devida autorizagao dos detentores dos direitos autorais
originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes de direitos autorais ou por quaisquer
danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de qualquer
responsabilidade relacionada ao conteudo aqui apresentado.

https://ic.unicamp.br/~mc102/aulas/aula12.pdf
https://www.ime.usp.br/~pf/algoritmos/aulas/recu.html
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://www.youtube.com/watch?v=p7Wka25AcvE
https://programacaodescomplicada.wordpress.com/2012/09/19/aula-51-recursao/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/lecture-6-recursion-and-dictionaries/

19“%6[

i 3 - . p OTIM: .ai csres CA%)
] Casl ORKE: QUaWre A pum. ﬂ I~ﬂm§h: 2~ 5 i _

; CB 1601#\\”/) T~ | ‘)LJ—’MA a‘,a. D
T i N A 0 e € /s
| TICA 0RC T Camo o pwn. mAEN ‘) cAwa: FWM
J o " >
; e € TAOH PELA F’,
R NER bmwf,l’* pos NS Toimerat £, 2)| o s J
' L I & T I uLT.,o;.m /’A_> FA‘L“’FA-J.
QGAL»VL_?ELJ Aate | STAVTUN afi L — ‘\ B
ATICin @ Gaso gase O bpsC evivAL -

“CASe Qecdnive

’f Defrmin—CH_Bem
CB ,w,w:

ALC»‘M/i:Aw/ FCR e pr\m’*C[
\ JNAOEGeADg ce Aacguer

“‘ ' ‘ N .
‘ | N [Esmutuea) = LisraS Lictpn§ N\
Y cm (%ée De Anm\w } RA00S % irﬂ\!’om J GRALL
acofifg
o ‘PM/W\ Fupid [A B [;w’x; Py pencofrgl
\ “\Jﬁi\\h%(i LOC 418 ‘ L ’(V\R/\QJ((,QS'
T Teny | QeToaws 7:;”'”7_ . N . e
O CowTeeie | | 'T" - LimiTAN Profur ol

= 0TIz actis(mem., Rec. Decauds
- RuminTan @ Taan. PiLKG
- U Sap Teemiia LTenatogh €~/

“ESToung DT PiLhs O\
= Dvpucacik De Caegikod

C [ONEAMERD D& CHBamNDRS]

1-GAndwrin CB

} RELVALTY eNiTieas Atcaiv ¢ Vel
:‘ P it — |~CcR deand
] "‘Bb% N ol = = CHam GE7/:2N AP{:U’(‘/V‘A-.N\

00ge—
Tes 7€ |c A 3es E AT EmD4 ‘
P vemipican 03 LM
De propono 08D "
- ..jr/music D¢ CCM,”L.(?’?;G'}L

: o
| Ex: Fiponacc 4__*_%{,&&
A~ G0 o

- : Leoney N Snggulﬁ___ . ReTouwe MYy
I SQ_N_*Eo_l _____

Ly

‘ - o
i i ———
-
|
o } e, —
|
|
!
|
-
5

	Recursividade
	Introdução
	Conceito de Chamada Recursiva
	A estrutura básica de uma função recursiva inclui:
	Casos Base e Recursão Infinita
	Para evitar a recursão infinita, é essencial:

	Tipos de Recursão
	Pilha de Execução e Recursão
	Comparação com Soluções Iterativas
	Aplicações Clássicas da Recursão

	Otimização de Recursão
	Limitações e Cuidados com Recursão
	Recursão e Estruturas de Dados Recursivas
	Recursão em Diferentes Paradigmas de Programação
	Boas Práticas no Uso de Recursão
	Conclusão
	Referências

