https://prettore.qithub.io/lectures.html

Processos e Threads em Sistemas Operacionais com
Multiprogramacao e Tempo Compartilhado

Introdugao

Conceitos de Processos e Threads
Processo
Thread

Modelos e Implementag¢des de Processos e Threads
Modelos de Threads

Chamadas de Sistema para Gerenciamento de Processos e Threads no Modelo
POSIX

Gerenciamento de Processos (POSIX)
Gerenciamento de Threads (POSIX Threads - Pthreads)
Exemplos da Gestao de Processos e Threads em Linux e Windows

N N N NN =

Linux

Windows

Comparativo Linux vs. Windows:
Conclusao

U1 U1 U1 o DWW W

Referéncias

Introducao

Em sistemas operacionais modernos, a capacidade de executar multiplas tarefas
simultaneamente €& fundamental. Essa simultaneidade é alcancada através dos
conceitos de processos e threads, que sado as unidades basicas de trabalho
gerenciadas pelo sistema operacional. A multiprogramacado permite que varios
processos residam na memoéria ao mesmo tempo, alternando o uso da CPU entre eles,
enquanto o tempo compartilhado (time-sharing) € uma extensdo da multiprogramacgéao
que permite que multiplos usuarios interajam com o sistema de forma concorrente,
cada um com a impressao de ter o computador para si. Este capitulo explora em
profundidade os conceitos de processos e threads, seus modelos de implementacao,
as chamadas de sistema associadas (com foco no padrdo POSIX) e como esses
mecanismos sao gerenciados nos sistemas operacionais Linux e Windows.
Compreender processos e threads é essencial para entender como os SOs gerenciam
a execucgao de programas e otimizam o uso dos recursos do sistema.


https://prettore.github.io/lectures.html

Conceitos de Processos e Threads

Processo

Um processo é formalmente definido como um programa em execuc¢ao. Mais do que
apenas o codigo do programa (também conhecido como segao de texto), um processo
inclui o estado atual da atividade, representado pelo valor do contador de programa
(program counter) e o conteudo dos registradores do processador. Além disso, um
processo possui uma pilha (stack), que contém dados temporarios como parametros de
funcado, enderecos de retorno e variaveis locais, e uma se¢édo de dados (data section),
que contém variaveis globais. Um processo também pode incluir um heap, que é
memoéria alocada dinamicamente durante o tempo de execug¢do do processo. Cada
processo € uma entidade independente com seu proprio espagco de enderegcamento
virtual, protegido de outros processos no sistema. O sistema operacional é responsavel
por criar, escalonar, sincronizar e terminar processos, além de gerenciar seus recursos.

Thread

Uma thread (ou fluxo de execucgéo) € a unidade basica de utilizacdo da CPU; ela
compreende um ID de thread, um contador de programa, um conjunto de registradores
e uma pilha. Threads compartiham com outras threads pertencentes ao mesmo
processo sua secgdo de coddigo, secdo de dados e outros recursos do sistema
operacional, como arquivos abertos e sinais. Essa capacidade de compartilhamento
torna a comunicagdo entre threads mais eficiente do que a comunicagcdo entre
processos (Inter-Process Communication - IPC), pois as threads de um mesmo
processo podem acessar diretamente as mesmas areas de memoaria. A utilizacdo de
multiplas threads dentro de um unico processo, conhecida como multithreading,
permite que um programa execute varias tarefas concorrentemente, melhorando a
responsividade e o desempenho, especialmente em sistemas multiprocessadores.

Modelos e Implementacoes de Processos e Threads

Existem diferentes maneiras de implementar threads, principalmente em relagcao a
forma como as threads de nivel de usuario (gerenciadas pela biblioteca de threads da
aplicacdo) s&o mapeadas para as threads de nivel de nucleo (gerenciadas pelo sistema
operacional).

Modelos de Threads

1. Modelo Muitos-para-Um (N:1): Neste modelo, varias threads de nivel de usuario
sdo mapeadas para uma unica thread de nivel de nucleo. O gerenciamento de
threads é feito no espago do usuario, o que é rapido e eficiente, pois nao requer
chamadas de sistema. No entanto, se uma thread de usuario realizar uma
chamada de sistema bloqueante, todo o processo sera bloqueado, mesmo que
outras threads pudessem continuar a execugao. Além disso, este modelo ndao pode
tirar proveito de arquiteturas multiprocessadoras, pois apenas uma thread pode
acessar o nucleo por vez.



Modelo Um-para-Um (1:1): Cada thread de nivel de usuario € mapeada para uma
thread de nivel de nucleo separada. Este modelo supera as desvantagens do
modelo N:1, pois uma chamada de sistema bloqueante por uma thread nao afeta
as outras threads do processo. Além disso, permite o paralelismo real em sistemas
multiprocessadores, pois multiplas threads podem ser executadas
simultaneamente em diferentes processadores. A principal desvantagem é o custo
associado a criagao de uma thread de nucleo para cada thread de usuario, o que
pode sobrecarregar o sistema se um grande numero de threads for criado. Este é
o modelo adotado por sistemas como Linux e versdes mais recentes do Windows.

Modelo Muitos-para-Muitos (N:M): Este modelo multiplexa muitas threads de
nivel de usuario para um numero menor ou igual de threads de nivel de nucleo. Ele
combina as vantagens dos modelos N:1 e 1:1. Desenvolvedores podem criar
quantas threads de usuario desejarem, e as threads de nucleo correspondentes
podem ser executadas em paralelo em um multiprocessador. Além disso, quando
uma thread realiza uma chamada de sistema bloqueante, o nucleo pode agendar
outra thread para execucdo. No entanto, a implementacdo deste modelo é
complexa.

Chamadas de Sistema para Gerenciamento de Processos e Threads
no Modelo POSIX

O padrao POSIX (Portable Operating System Interface) define uma API padrao para
sistemas operacionais do tipo Unix. Ele inclui um conjunto de chamadas de sistema
para o gerenciamento de processos e threads.

Gerenciamento de Processos (POSIX)

fork(): Cria um novo processo, que é uma cépia do processo chamador (processo
pai). O novo processo € chamado de processo filho. fork() retorna o ID do processo
filho para o pai e 0 para o filho, ou -1 em caso de erro.

exec() (familia de fungbes: execl, execv, execle, execve, execlp, execvp): Substitui a
imagem do processo atual por um novo programa. O novo programa comecga a
execucao a partir de sua fungcao main. Se exec() for bem-sucedido, ele nao retorna,
pois o processo original foi sobrescrito.

wait() e waitpid(): Permitem que um processo pai espere pela terminagcdo de um de
seus processos filhos. waitpid() oferece mais controle, permitindo esperar por um
filho especifico ou por qualquer filho em um grupo de processos.

exit(): Termina o processo chamador e retorna um status de saida para o processo

pai.
getpid(): Retorna o ID do processo chamador.

getppid(): Retorna o ID do processo pai do processo chamador.

Gerenciamento de Threads (POSIX Threads - Pthreads)

A biblioteca Pthreads fornece a API para criagdo e gerenciamento de threads em
sistemas POSIX.



e pthread_create(): Cria uma nova thread dentro do processo chamador. Requer um
ponteiro para um atributo de thread (ou NULL para default), a fungao que a thread
executara, e um argumento para essa fungao.

e pthread_join(): Bloqueia a thread chamadora até que a thread especificada termine
sua execucdo. Permite que uma thread espere pela conclusao de outra.

e pthread_exit(): Termina a thread chamadora. Um valor de retorno pode ser passado
para outra thread que esteja esperando (via pthread_join()).

e pthread_self(): Retorna o ID da thread chamadora.

e pthread_cancel(): Envia uma solicitacdo de cancelamento para uma thread

especificada.
e Mecanismos de sincronizagdo (ndo abordados em detalhe aqui, mas parte
fundamental do Pthreads): pthread_mutex_init, pthread_mutex_lock,

pthread_mutex_unlock, pthread_cond_init, pthread_cond_wait, pthread_cond_signal, etc.

Exemplos da Gestao de Processos e Threads em Linux e
Windows

Linux

O Linux implementa processos e threads de maneira integrada. Historicamente, o Linux
nao distinguia fortemente entre processos e threads; uma thread era vista como um
tipo especial de processo que compartilhava certos recursos (como o espago de
enderecamento) com outros processos (threads). A chamada de sistema clone() é
usada para criar tanto processos quanto threads, permitindo um controle granular sobre
quais recursos sao compartilhados entre o pai e o filho.

e Processos no Linux: Cada processo no Linux é representado por uma estrutura
task_struct no kernel. A chamada fork() cria um novo processo duplicando o
task_struct do pai, e exec() carrega um novo programa na imagem do processo.

e Threads no Linux (NPTL): A Native POSIX Thread Library (NPTL) é a
implementagdo moderna de Pthreads no Linux. Ela utiliza o modelo 1:1, onde cada
thread de usuario corresponde a uma thread de kernel (um task_struct leve). Isso
permite um bom desempenho em sistemas multiprocessadores e conformidade
com o padrao POSIX.

Windows

O Windows possui uma distingdo clara entre processos e threads, ambos sendo
objetos gerenciados pelo kernel.

e Processos no Windows: Um processo no Windows € um contéiner para recursos
e inclui um espaco de enderegamento virtual privado, um token de acesso (para
seguranca), e pelo menos uma thread de execugéo. A criagao de processos € feita
pela fungao CreateProcess() da Win32 API. Um processo nao faz nada por si s6; ele
precisa de threads para executar codigo.



e Threads no Windows: Cada processo comeg¢a com uma thread primaria, e pode
criar threads adicionais usando a fungdo CreateThread() (ou _beginthreadex para
cédigo C/C++). O Windows utiliza um modelo 1:1, mapeando cada thread de
usuario para uma thread de kernel. O kernel do Windows gerencia e escalona
threads individualmente. O Windows também fornece um rico conjunto de
primitivas de sincronizagao para threads.

Comparativo Linux vs. Windows:

e Criagao: Linux usa fork() e exec() (ou clone() para controle fino) para processos, e
Pthreads (pthread_create(), que internamente usa clone()) para threads. Windows
usa CreateProcess() para processos e CreateThread() para threads.

e Modelo de Thread: Ambos os sistemas modernos (Linux com NPTL e Windows)
usam predominantemente o modelo 1:1.

e API: Linux adere ao padrao POSIX para processos e threads. Windows possui sua
propria APl (Win32/Win64).

e Recursos Compartilhados: Em ambos, threads dentro de um mesmo processo
compartiiham o espagco de enderegcamento e outros recursos do processo,
enquanto processos sao mais isolados.

Conclusao

Processos e threads sdo conceitos centrais para a multiprogramagado e o tempo
compartilhado, permitindo que os sistemas operacionais gerenciem a execugao
concorrente de tarefas de forma eficiente. Enquanto um processo representa um
programa em execugao com seus proprios recursos e espaco de enderegamento, as
threads sao fluxos de execucdo mais leves dentro de um processo, compartilhando
recursos e permitindo um paralelismo mais fino. A escolha do modelo de threading e as
APIs de gerenciamento (como POSIX Pthreads ou Win32 API) impactam diretamente
como as aplicagbes sao desenvolvidas e como o sistema operacional explora os
recursos de hardware, especialmente em arquiteturas multiprocessadoras. Tanto Linux
quanto Windows evoluiram para fornecer implementagdes robustas e eficientes de
processos e threads, cada um com suas particularidades, mas ambos visando
maximizar o desempenho e a responsividade do sistema.

Referéncias

+ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts
(10th ed.). Wiley.

« Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

« Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

* Russinovich, M. E., Solomon, D. A., & lonescu, A. (2012). Windows Internals, Part
1 (6th ed.). Microsoft Press.



Isengio de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagédo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagao dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao contetdo aqui apresentado.



	Processos e Threads em Sistemas Operacionais com Multiprogramação e Tempo Compartilhado 
	Introdução 
	Conceitos de Processos e Threads 
	Processo 
	Thread 

	Modelos e Implementações de Processos e Threads 
	Modelos de Threads 
	Chamadas de Sistema para Gerenciamento de Processos e Threads no Modelo POSIX 
	Gerenciamento de Processos (POSIX) 
	Gerenciamento de Threads (POSIX Threads - Pthreads) 


	Exemplos da Gestão de Processos e Threads em Linux e Windows 
	Linux 
	Windows 
	Comparativo Linux vs. Windows: 

	Conclusão 
	Referências 

