https://prettore.qithub.io/lectures.html

Sincronizagcao e Comunicacao entre Processos (IPC)

Introdugéao
Conceitos Fundamentais
Solugdes Histdricas e Atuais para Exclusao Mutua
Solugdes de Software
Solugdes com Suporte de Hardware
Primitivas de Sincronizagao de Alto Nivel
Problemas Classicos de Comunicagao entre Processos
Passagem de Mensagens (Message Passing)
Caracteristicas
Barreiras (Barriers)
Sincronizagao e Comunicagao nos Sistemas Operacionais Linux e Windows
Linux
Windows
Conclusao
Referéncias

OO0 0L O O DWW WNDNDNN=

Introducao

Em sistemas operacionais que suportam concorréncia, seja através de
multiprogramagao com multiplos processos ou multithreading dentro de um unico
processo, a necessidade de coordenar as atividades dessas entidades concorrentes é
crucial. Processos e threads frequentemente precisam cooperar para realizar uma
tarefa comum ou competir por recursos compartilhados. Sem mecanismos adequados
de coordenagao, podem surgir problemas como condigdes de corrida (race conditions),
onde o resultado de uma computacao depende da ordem imprevisivel de execugao das
operagoes, e deadlocks, onde dois ou more processos ficam permanentemente
bloqueados, cada um esperando por um recurso que o outro detém. Este capitulo
aborda os conceitos fundamentais de sincronizagdo e comunicagao entre processos
(Inter-Process Communication - IPC), explorando solugdes histéricas e atuais para o
problema da exclusdao mutua, discutindo problemas classicos de IPC, e detalhando
mecanismos como passagem de mensagens e barreiras. Aléem disso, examinaremos
como a sincronizagao e a IPC sdo implementadas nos sistemas operacionais Linux e
Windows.

Conceitos Fundamentais

Concorréncia: Ocorre quando multiplos processos ou threads parecem executar
simultaneamente. Em sistemas monoprocessadores, isso € alcancado pela

https://prettore.github.io/lectures.html

intercalacao rapida da execucgao (multiprogramacao). Em sistemas multiprocessadores,
a concorréncia pode envolver paralelismo real, com diferentes processos/threads
executando em diferentes CPUs ao mesmo tempo.

Recursos Compartilhados: Sao recursos do sistema que podem ser acessados por
multiplos processos ou threads, como variaveis em memoéria compartilhada, arquivos,
dispositivos de E/S, etc.

Secgdo Critica: E uma porgdo de codigo dentro de um processo/thread onde um
recurso compartilhado é acessado. Para garantir a integridade dos dados, é essencial
que apenas um processo/thread possa executar sua segdo critica (para um
determinado recurso compartilhado) por vez.

Condicdao de Corrida (Race Condition): Uma situacdo onde multiplos
processos/threads acessam e manipulam dados compartilhados concorrentemente, e o
resultado final da manipulacdo dos dados depende da ordem particular em que os
acessos ocorrem. Condigdes de corrida podem levar a resultados incorretos e
inconsistentes.

Exclusdo Muatua: E um mecanismo que garante que, se um processo esta executando
em sua secgao critica, nenhum outro processo pode estar executando em sua segao
critica (relativa ao mesmo recurso compartilhado). E a principal forma de evitar
condi¢des de corrida.

Solugdes Historicas e Atuais para Exclusao Mutua

Para garantir a exclusdo mutua, varias solugbes foram propostas, variando de
abordagens baseadas em software a suporte de hardware.

Solugdes de Software

e Algoritmo de Peterson (para dois processos): Uma solucao classica baseada
em software que usa variaveis compartilhadas (turn e flag[]) para coordenar o
acesso a secgao critica entre dois processos. Garante exclusdo mutua, progresso e
espera limitada (bounded waiting).

 Algoritmo da Padaria de Lamport (para N processos): Uma solu¢gdo mais geral
para N processos, onde cada processo recebe um numero (como em uma padaria)
€ 0 processo com 0 menor numero entra na segao critica.

Solugdes com Suporte de Hardware
Instrugdes de hardware podem simplificar a implementacédo da exclusdo mutua.

e Desabilitar Interrupgées: Em sistemas monoprocessadores, um processo pode
desabilitar todas as interrupgdes antes de entrar na segao critica e reabilita-las ao
sair. Isso impede que o processo seja preemptado, garantindo a exclusdo mutua.
No entanto, essa abordagem nao funciona em sistemas multiprocessadores e
pode ser perigosa se 0 processo permanecer na segao critica por muito tempo.

e Instrugcées Atomicas (Test-and-Set, Compare-and-Swap): Sao instrugcdes de
maquina que executam multiplas operagdes (como ler um valor, testa-lo e

modifica-lo) de forma indivisivel (atbmica). A instru¢cao TestAndSet(lock) testa o valor
de lock e o define como true em uma unica operacdo atdbmica. A instrugcao
CompareAndSwap(lock, expected, new) compara atomicamente o conteudo de lock
com expected; se forem iguais, lock € modificado para new.

Primitivas de Sincronizag¢ao de Alto Nivel

Para facilitar a programagao concorrente, os sistemas operacionais e bibliotecas de
programacao fornecem primitivas de sincronizagdo de mais alto nivel.

Semaforos: Propostos por Dijkstra, um semaforo € uma variavel inteira acessada
apenas através de duas operagdes atdbmicas: wait() (ou P, do holandés proberen,
tentar) e signal() (ou V, verhogen, incrementar). Semaforos de contagem podem ter
qualquer valor inteiro ndo negativo, enquanto semaforos binarios (mutexes) sé
podem ter os valores 0 ou 1, sendo usados para implementar exclusdo mutua.
Mutexes (Mutual Exclusion Locks): Sao essencialmente semaforos binarios
usados para proteger seg¢des criticas. Um processo adquire o mutex antes de
entrar na secéo critica e o libera ao sair. Apenas um processo pode deter o mutex
por vez.

Variaveis de Condigao: Usadas em conjunto com mutexes, permitem que threads
esperem por uma condicdo especifica se tornar verdadeira. Uma thread pode
esperar (wait) em uma variavel de condi¢ao, liberando o mutex associado. Outra
thread, apos alterar o estado que satisfaz a condigao, pode sinalizar (signal ou
broadcast) a variavel de condicdo para acordar uma ou todas as threads em
espera.

Monitores: Uma construgdo de linguagem de programagdo de alto nivel que
fornece um mecanismo conveniente e eficaz para sincronizacédo de processos. Um
monitor € um moédulo que encapsula dados compartilhados, procedimentos que
operam nesses dados e mecanismos de sincronizagao para esses procedimentos.
Apenas uma thread pode estar ativa dentro de um monitor por vez, garantindo
exclusao mutua implicitamente. Variaveis de condicdo sao frequentemente usadas
dentro de monitores.

Problemas Classicos de Comunicacao entre Processos

Diversos problemas classicos sdo usados para testar e demonstrar a eficacia das
primitivas de sincronizagao:

Problema do Produtor-Consumidor (Bounded-Buffer Problem): Um ou mais
processos produtores geram dados e os colocam em um buffer compartilhado de
tamanho finito. Um ou mais processos consumidores retiram dados do buffer. E
preciso sincronizar o acesso ao buffer para evitar que produtores adicionem dados
a um buffer cheio ou que consumidores tentem remover dados de um buffer vazio.

Problema dos Leitores-Escritores: Multiplos processos acessam um recurso de
dados compartilhado. Alguns processos (leitores) apenas leem os dados, enquanto
outros (escritores) modificam os dados. Multiplos leitores podem acessar os dados

simultaneamente. No entanto, se um escritor esta acessando os dados, nenhum
outro processo (leitor ou escritor) pode acessa-los. Variagbes existem, priorizando
leitores ou escritores, ou buscando evitar a inanigao (starvation) de qualquer um
deles.

e Problema do Jantar dos Filésofos: Cinco filosofos estdo sentados em volta de
uma mesa circular. Entre cada par de filésofos adjacentes ha um garfo (hashi).
Cada filésofo alterna entre pensar e comer. Para comer, um fildsofo precisa de dois
garfos: o da sua esquerda e o da sua direita. O problema é projetar um protocolo
que permita aos filésofos comerem sem causar deadlock (todos pegam um garfo e
esperam pelo outro) ou inanig&o.

Passagem de Mensagens (Message Passing)

A passagem de mensagens € um mecanismo de IPC onde os processos se
comunicam e sincronizam suas agbes sem compartiihar o mesmo espaco de
enderecamento. Em vez disso, eles trocam mensagens. Duas operagdes basicas sao
necessarias: send(message) e receive(message).

Caracteristicas
« Comunicagao Direta vs. Indireta:

- Direta: Cada processo deve nomear explicitamente o destinatario ou
remetente da comunicagao (e.g., send(P, message) envia para o processo P;
receive(Q, message) recebe de Q).

- Indireta: As mensagens sao enviadas e recebidas de caixas de correio
(mailboxes) ou portas. Multiplos processos podem compartilhar uma caixa
de correio.

« Sincronizagao (Bloqueante vs. Nao-Bloqueante):

- Send Bloqueante: O remetente é bloqueado até que a mensagem seja
recebida pelo destinatario ou pela caixa de correio.

- Send Nao-Bloqueante: O remetente envia a mensagem e continua sua
execucgao.

- Receive Bloqueante: O receptor € bloqueado até que uma mensagem
esteja disponivel.

- Receive Nao-Bloqueante: O receptor tenta receber uma mensagem; se
nenhuma estiver disponivel, ele retorna imediatamente (com um indicador
de falha ou uma mensagem nula).

» Buffering: As mensagens trocadas residem em uma fila temporaria. As filas
podem ter capacidade zero (sem buffer, o remetente deve esperar pelo receptor -
rendezvous), capacidade limitada ou capacidade ilimitada.

Barreiras (Barriers)

Uma barreira € um ponto de sincronizagao onde multiplos processos ou threads devem
esperar até que todos os membros de um grupo cheguem a esse ponto antes que
qualguer um deles possa prosseguir. Barreiras sdo comumente usadas em computagao

paralela, onde um calculo é dividido em fases e todos os threads devem completar uma
fase antes de iniciar a préxima.

Sincronizacao e Comunicagao nos Sistemas Operacionais
Linux e Windows

Linux

O Linux fornece um rico conjunto de mecanismos de sincronizagao e IPC, tanto no
nivel do kernel quanto para aplicagdes de espaco de usuario, aderindo em grande
parte aos padroes POSIX.

e Sincronizacao no Kernel: Spinlocks, mutexes, semaforos, read-write locks,
completion variables.

+ Sincronizagao no Espago do Usuario (POSIX):
- Mutexes (Pthreads): pthread_mutex_t
- Variaveis de Condicao (Pthreads): pthread_cond_t
- Semaforos (POSIX): Nomeados (sem_open) e ndo nomeados/baseados em
memoria (sem_init).
- Barreiras (Pthreads): pthread_barrier_t
- Read-Write Locks (Pthreads): pthread_rwlock t
« IPC no Linux:
- Pipes (Ané6nimos e Nomeados - FIFOs): Fluxos de bytes unidirecionais.

- Filas de Mensagens (POSIX e System V): Permitem que processos
troquem mensagens formatadas.

- Memoéria Compartilhada (POSIX e System V): Permite que multiplos
processos compartilhem uma regido de meméaria.

- Sockets (Berkeley Sockets): Para comunicagdo em rede e também IPC
local (Unix Domain Sockets).

- Sinais: Mecanismo assincrono para notificar processos sobre eventos.

Windows

O Windows oferece um conjunto abrangente de objetos de sincronizagdo e
mecanismos de |IPC através da Win32 API.

* Objetos de Sincronizagao:
- Mutexes: CreateMutex, ReleaseMutex, WaitForSingleObject.
- Semaforos: CreateSemaphore, ReleaseSemaphore, WaitForSingleObject.

- Eventos (Auto-reset e Manual-reset): CreateEvent, SetEvent, ResetEvent,
PulseEvent, WaitForSingleObject. Usados para sinalizar a ocorréncia de uma
condicao.

- Critical Sections: Um mecanismo de sincronizagao mais leve e rapido para
threads dentro do mesmo processo. InitializeCriticalSection,
EnterCriticalSection, LeaveCriticalSection.

- Slim Reader/Writer (SRW) Locks: Otimizados para cenarios com muitos
leitores e poucos escritores.

- Condition Variables: Usadas com critical sections ou SRW locks.
InitializeConditionVariable, SleepConditionVariableCS,
SleepConditionVariableSRW, WakeConditionVariable, WakeAllConditionVariable.

+ IPC no Windows:
- Pipes (Anénimos e Nomeados): Semelhantes aos do Linux.

- Mailslots: Comunicagao unidirecional baseada em mensagens, tipicamente
em rede local.

- Memoéria Compartilhada (Memory-Mapped Files): Permite que processos
mapeiem a mesma seg¢ao de um arquivo (ou da memdria do sistema) em
seus espacos de endereco.

- Sockets (Winsock): Para comunicagao em rede e IPC local.

- Chamada de Procedimento Remoto (RPC): Mecanismo de alto nivel para
comunicagao entre processos, inclusive em maquinas diferentes.

- Mensagens do Windows (Window Messages): Usadas primariamente
para comunicacao com interfaces graficas, mas podem ser usadas para IPC
geral entre threads que possuem filas de mensagens.

Conclusao

A sincronizagdo e a comunicagcdo entre processos sao aspectos fundamentais do
design de sistemas operacionais e da programacéao concorrente. A escolha correta e o
uso adequado de primitivas de sincronizacdo como mutexes, semaforos e variaveis de
condi¢cao sao essenciais para evitar problemas como condi¢des de corrida e deadlocks,
garantindo a corretude e a eficiéncia de aplicagbes multithreaded e sistemas
multiprocesso. Mecanismos de IPC, como passagem de mensagens, pipes e memoaria
compartilhada, fornecem os meios para que processos cooperem e troquem dados.
Tanto Linux quanto Windows oferecem um conjunto robusto e diversificado de
ferramentas para sincronizacido e IPC, permitindo que os desenvolvedores construam
aplicagdes concorrentes complexas e eficientes. A compreensao desses mecanismos €
vital para o desenvolvimento de software robusto e de alto desempenho em ambientes
modernos.

Referéncias
+ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts
(10th ed.). Wiley.

 Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

+ Downey, A. B. (2016). The Little Book of Semaphores (2nd ed.). Green Tea Press.

« Hart, J. M. (2005). Windows System Programming (3rd ed.). Addison-Wesley
Professional.

« Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

Isengio de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagédo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagdo dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao contetdo aqui apresentado.

	Sincronização e Comunicação entre Processos (IPC)
	Introdução
	Conceitos Fundamentais
	Soluções Históricas e Atuais para Exclusão Mútua
	Soluções de Software
	Soluções com Suporte de Hardware
	Primitivas de Sincronização de Alto Nível

	Problemas Clássicos de Comunicação entre Processos
	Passagem de Mensagens (Message Passing)
	Características

	Barreiras (Barriers)

	Sincronização e Comunicação nos Sistemas Operacionais Linux e Windows
	Linux
	Windows

	Conclusão
	Referências

