
1 

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de 
conteúdos bibliográficos disponíveis gratuitamente na Internet. 

Sincronização e Comunicação entre Processos (IPC) 
Introdução​ 1 

Conceitos Fundamentais​ 2 
Soluções Históricas e Atuais para Exclusão Mútua​ 2 

Soluções de Software​ 2 
Soluções com Suporte de Hardware​ 2 
Primitivas de Sincronização de Alto Nível​ 3 

Problemas Clássicos de Comunicação entre Processos​ 3 
Passagem de Mensagens (Message Passing)​ 4 

Características​ 4 
Barreiras (Barriers)​ 5 

Sincronização e Comunicação nos Sistemas Operacionais Linux e Windows​ 5 
Linux​ 5 
Windows​ 5 

Conclusão​ 6 
Referências​ 6 

Introdução 
Em sistemas operacionais que suportam concorrência, seja através de 
multiprogramação com múltiplos processos ou multithreading dentro de um único 
processo, a necessidade de coordenar as atividades dessas entidades concorrentes é 
crucial. Processos e threads frequentemente precisam cooperar para realizar uma 
tarefa comum ou competir por recursos compartilhados. Sem mecanismos adequados 
de coordenação, podem surgir problemas como condições de corrida (race conditions), 
onde o resultado de uma computação depende da ordem imprevisível de execução das 
operações, e deadlocks, onde dois ou more processos ficam permanentemente 
bloqueados, cada um esperando por um recurso que o outro detém. Este capítulo 
aborda os conceitos fundamentais de sincronização e comunicação entre processos 
(Inter-Process Communication - IPC), explorando soluções históricas e atuais para o 
problema da exclusão mútua, discutindo problemas clássicos de IPC, e detalhando 
mecanismos como passagem de mensagens e barreiras. Além disso, examinaremos 
como a sincronização e a IPC são implementadas nos sistemas operacionais Linux e 
Windows. 

Conceitos Fundamentais 
Concorrência: Ocorre quando múltiplos processos ou threads parecem executar 
simultaneamente. Em sistemas monoprocessadores, isso é alcançado pela 

https://prettore.github.io/lectures.html


2 

intercalação rápida da execução (multiprogramação). Em sistemas multiprocessadores, 
a concorrência pode envolver paralelismo real, com diferentes processos/threads 
executando em diferentes CPUs ao mesmo tempo. 

Recursos Compartilhados: São recursos do sistema que podem ser acessados por 
múltiplos processos ou threads, como variáveis em memória compartilhada, arquivos, 
dispositivos de E/S, etc. 

Seção Crítica: É uma porção de código dentro de um processo/thread onde um 
recurso compartilhado é acessado. Para garantir a integridade dos dados, é essencial 
que apenas um processo/thread possa executar sua seção crítica (para um 
determinado recurso compartilhado) por vez. 

Condição de Corrida (Race Condition): Uma situação onde múltiplos 
processos/threads acessam e manipulam dados compartilhados concorrentemente, e o 
resultado final da manipulação dos dados depende da ordem particular em que os 
acessos ocorrem. Condições de corrida podem levar a resultados incorretos e 
inconsistentes. 

Exclusão Mútua: É um mecanismo que garante que, se um processo está executando 
em sua seção crítica, nenhum outro processo pode estar executando em sua seção 
crítica (relativa ao mesmo recurso compartilhado). É a principal forma de evitar 
condições de corrida. 

Soluções Históricas e Atuais para Exclusão Mútua 
Para garantir a exclusão mútua, várias soluções foram propostas, variando de 
abordagens baseadas em software a suporte de hardware. 

Soluções de Software 
•​ Algoritmo de Peterson (para dois processos): Uma solução clássica baseada 

em software que usa variáveis compartilhadas (turn e flag[]) para coordenar o 
acesso à seção crítica entre dois processos. Garante exclusão mútua, progresso e 
espera limitada (bounded waiting). 

•​ Algoritmo da Padaria de Lamport (para N processos): Uma solução mais geral 
para N processos, onde cada processo recebe um número (como em uma padaria) 
e o processo com o menor número entra na seção crítica. 

Soluções com Suporte de Hardware 

Instruções de hardware podem simplificar a implementação da exclusão mútua. 

•​ Desabilitar Interrupções: Em sistemas monoprocessadores, um processo pode 
desabilitar todas as interrupções antes de entrar na seção crítica e reabilitá-las ao 
sair. Isso impede que o processo seja preemptado, garantindo a exclusão mútua. 
No entanto, essa abordagem não funciona em sistemas multiprocessadores e 
pode ser perigosa se o processo permanecer na seção crítica por muito tempo. 

•​ Instruções Atômicas (Test-and-Set, Compare-and-Swap): São instruções de 
máquina que executam múltiplas operações (como ler um valor, testá-lo e 



3 

modificá-lo) de forma indivisível (atômica). A instrução TestAndSet(lock) testa o valor 
de lock e o define como true em uma única operação atômica. A instrução 
CompareAndSwap(lock, expected, new) compara atomicamente o conteúdo de lock 
com expected; se forem iguais, lock é modificado para new. 

Primitivas de Sincronização de Alto Nível 

Para facilitar a programação concorrente, os sistemas operacionais e bibliotecas de 
programação fornecem primitivas de sincronização de mais alto nível. 

•​ Semáforos: Propostos por Dijkstra, um semáforo é uma variável inteira acessada 
apenas através de duas operações atômicas: wait() (ou P, do holandês proberen, 
tentar) e signal() (ou V, verhogen, incrementar). Semáforos de contagem podem ter 
qualquer valor inteiro não negativo, enquanto semáforos binários (mutexes) só 
podem ter os valores 0 ou 1, sendo usados para implementar exclusão mútua. 

•​ Mutexes (Mutual Exclusion Locks): São essencialmente semáforos binários 
usados para proteger seções críticas. Um processo adquire o mutex antes de 
entrar na seção crítica e o libera ao sair. Apenas um processo pode deter o mutex 
por vez. 

•​ Variáveis de Condição: Usadas em conjunto com mutexes, permitem que threads 
esperem por uma condição específica se tornar verdadeira. Uma thread pode 
esperar (wait) em uma variável de condição, liberando o mutex associado. Outra 
thread, após alterar o estado que satisfaz a condição, pode sinalizar (signal ou 
broadcast) a variável de condição para acordar uma ou todas as threads em 
espera. 

•​ Monitores: Uma construção de linguagem de programação de alto nível que 
fornece um mecanismo conveniente e eficaz para sincronização de processos. Um 
monitor é um módulo que encapsula dados compartilhados, procedimentos que 
operam nesses dados e mecanismos de sincronização para esses procedimentos. 
Apenas uma thread pode estar ativa dentro de um monitor por vez, garantindo 
exclusão mútua implicitamente. Variáveis de condição são frequentemente usadas 
dentro de monitores. 

Problemas Clássicos de Comunicação entre Processos 
Diversos problemas clássicos são usados para testar e demonstrar a eficácia das 
primitivas de sincronização: 

•​ Problema do Produtor-Consumidor (Bounded-Buffer Problem): Um ou mais 
processos produtores geram dados e os colocam em um buffer compartilhado de 
tamanho finito. Um ou mais processos consumidores retiram dados do buffer. É 
preciso sincronizar o acesso ao buffer para evitar que produtores adicionem dados 
a um buffer cheio ou que consumidores tentem remover dados de um buffer vazio. 

•​ Problema dos Leitores-Escritores: Múltiplos processos acessam um recurso de 
dados compartilhado. Alguns processos (leitores) apenas leem os dados, enquanto 
outros (escritores) modificam os dados. Múltiplos leitores podem acessar os dados 



4 

simultaneamente. No entanto, se um escritor está acessando os dados, nenhum 
outro processo (leitor ou escritor) pode acessá-los. Variações existem, priorizando 
leitores ou escritores, ou buscando evitar a inanição (starvation) de qualquer um 
deles. 

•​ Problema do Jantar dos Filósofos: Cinco filósofos estão sentados em volta de 
uma mesa circular. Entre cada par de filósofos adjacentes há um garfo (hashi). 
Cada filósofo alterna entre pensar e comer. Para comer, um filósofo precisa de dois 
garfos: o da sua esquerda e o da sua direita. O problema é projetar um protocolo 
que permita aos filósofos comerem sem causar deadlock (todos pegam um garfo e 
esperam pelo outro) ou inanição. 

Passagem de Mensagens (Message Passing) 
A passagem de mensagens é um mecanismo de IPC onde os processos se 
comunicam e sincronizam suas ações sem compartilhar o mesmo espaço de 
endereçamento. Em vez disso, eles trocam mensagens. Duas operações básicas são 
necessárias: send(message) e receive(message). 

Características 
•​ Comunicação Direta vs. Indireta: 

–​ Direta: Cada processo deve nomear explicitamente o destinatário ou 
remetente da comunicação (e.g., send(P, message) envia para o processo P; 
receive(Q, message) recebe de Q). 

–​ Indireta: As mensagens são enviadas e recebidas de caixas de correio 
(mailboxes) ou portas. Múltiplos processos podem compartilhar uma caixa 
de correio. 

•​ Sincronização (Bloqueante vs. Não-Bloqueante): 
–​ Send Bloqueante: O remetente é bloqueado até que a mensagem seja 

recebida pelo destinatário ou pela caixa de correio. 
–​ Send Não-Bloqueante: O remetente envia a mensagem e continua sua 

execução. 
–​ Receive Bloqueante: O receptor é bloqueado até que uma mensagem 

esteja disponível. 
–​ Receive Não-Bloqueante: O receptor tenta receber uma mensagem; se 

nenhuma estiver disponível, ele retorna imediatamente (com um indicador 
de falha ou uma mensagem nula). 

•​ Buffering: As mensagens trocadas residem em uma fila temporária. As filas 
podem ter capacidade zero (sem buffer, o remetente deve esperar pelo receptor - 
rendezvous), capacidade limitada ou capacidade ilimitada. 

Barreiras (Barriers) 
Uma barreira é um ponto de sincronização onde múltiplos processos ou threads devem 
esperar até que todos os membros de um grupo cheguem a esse ponto antes que 
qualquer um deles possa prosseguir. Barreiras são comumente usadas em computação 



5 

paralela, onde um cálculo é dividido em fases e todos os threads devem completar uma 
fase antes de iniciar a próxima. 

Sincronização e Comunicação nos Sistemas Operacionais 
Linux e Windows 
Linux 
O Linux fornece um rico conjunto de mecanismos de sincronização e IPC, tanto no 
nível do kernel quanto para aplicações de espaço de usuário, aderindo em grande 
parte aos padrões POSIX. 

•​ Sincronização no Kernel: Spinlocks, mutexes, semáforos, read-write locks, 
completion variables. 

•​ Sincronização no Espaço do Usuário (POSIX): 
–​ Mutexes (Pthreads): pthread_mutex_t 
–​ Variáveis de Condição (Pthreads): pthread_cond_t 
–​ Semáforos (POSIX): Nomeados (sem_open) e não nomeados/baseados em 

memória (sem_init). 
–​ Barreiras (Pthreads): pthread_barrier_t 
–​ Read-Write Locks (Pthreads): pthread_rwlock_t 

•​ IPC no Linux: 
–​ Pipes (Anônimos e Nomeados - FIFOs): Fluxos de bytes unidirecionais. 
–​ Filas de Mensagens (POSIX e System V): Permitem que processos 

troquem mensagens formatadas. 
–​ Memória Compartilhada (POSIX e System V): Permite que múltiplos 

processos compartilhem uma região de memória. 
–​ Sockets (Berkeley Sockets): Para comunicação em rede e também IPC 

local (Unix Domain Sockets). 
–​ Sinais: Mecanismo assíncrono para notificar processos sobre eventos. 

Windows 
O Windows oferece um conjunto abrangente de objetos de sincronização e 
mecanismos de IPC através da Win32 API. 

•​ Objetos de Sincronização: 
–​ Mutexes: CreateMutex, ReleaseMutex, WaitForSingleObject. 
–​ Semáforos: CreateSemaphore, ReleaseSemaphore, WaitForSingleObject. 
–​ Eventos (Auto-reset e Manual-reset): CreateEvent, SetEvent, ResetEvent, 

PulseEvent, WaitForSingleObject. Usados para sinalizar a ocorrência de uma 
condição. 



6 

–​ Critical Sections: Um mecanismo de sincronização mais leve e rápido para 
threads dentro do mesmo processo. InitializeCriticalSection, 
EnterCriticalSection, LeaveCriticalSection. 

–​ Slim Reader/Writer (SRW) Locks: Otimizados para cenários com muitos 
leitores e poucos escritores. 

–​ Condition Variables: Usadas com critical sections ou SRW locks. 
InitializeConditionVariable, SleepConditionVariableCS, 
SleepConditionVariableSRW, WakeConditionVariable, WakeAllConditionVariable. 

•​ IPC no Windows: 
–​ Pipes (Anônimos e Nomeados): Semelhantes aos do Linux. 
–​ Mailslots: Comunicação unidirecional baseada em mensagens, tipicamente 

em rede local. 
–​ Memória Compartilhada (Memory-Mapped Files): Permite que processos 

mapeiem a mesma seção de um arquivo (ou da memória do sistema) em 
seus espaços de endereço. 

–​ Sockets (Winsock): Para comunicação em rede e IPC local. 
–​ Chamada de Procedimento Remoto (RPC): Mecanismo de alto nível para 

comunicação entre processos, inclusive em máquinas diferentes. 
–​ Mensagens do Windows (Window Messages): Usadas primariamente 

para comunicação com interfaces gráficas, mas podem ser usadas para IPC 
geral entre threads que possuem filas de mensagens. 

Conclusão 
A sincronização e a comunicação entre processos são aspectos fundamentais do 
design de sistemas operacionais e da programação concorrente. A escolha correta e o 
uso adequado de primitivas de sincronização como mutexes, semáforos e variáveis de 
condição são essenciais para evitar problemas como condições de corrida e deadlocks, 
garantindo a corretude e a eficiência de aplicações multithreaded e sistemas 
multiprocesso. Mecanismos de IPC, como passagem de mensagens, pipes e memória 
compartilhada, fornecem os meios para que processos cooperem e troquem dados. 
Tanto Linux quanto Windows oferecem um conjunto robusto e diversificado de 
ferramentas para sincronização e IPC, permitindo que os desenvolvedores construam 
aplicações concorrentes complexas e eficientes. A compreensão desses mecanismos é 
vital para o desenvolvimento de software robusto e de alto desempenho em ambientes 
modernos. 

Referências 
•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts 

(10th ed.). Wiley. 
•​ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson 

Education. 
•​ Downey, A. B. (2016). The Little Book of Semaphores (2nd ed.). Green Tea Press. 



7 

•​ Hart, J. M. (2005). Windows System Programming (3rd ed.). Addison-Wesley 
Professional. 

•​ Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley 
Professional. 

 

Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento 
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e 
fontes originais. 

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores 
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações 
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento. 

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de 
qualquer responsabilidade relacionada ao conteúdo aqui apresentado. 


	Sincronização e Comunicação entre Processos (IPC) 
	Introdução 
	Conceitos Fundamentais 
	Soluções Históricas e Atuais para Exclusão Mútua 
	Soluções de Software 
	Soluções com Suporte de Hardware 
	Primitivas de Sincronização de Alto Nível 


	Problemas Clássicos de Comunicação entre Processos 
	Passagem de Mensagens (Message Passing) 
	Características 

	Barreiras (Barriers) 

	Sincronização e Comunicação nos Sistemas Operacionais Linux e Windows 
	Linux 
	Windows 

	Conclusão 
	Referências 

