https://prettore.qithub.io/lectures.html

Escalonamento de Processos

Introdugéao
Conceitos Basicos de Escalonamento

Critérios de Escalonamento

Algoritmos de Escalonamento

Escalonamento nos Sistemas Operacionais Linux e Windows
Linux
Windows

Conclusao

Referéncias

OO0 OB~ BDNDN-_A=

Introducao

Em um sistema operacional com multiprogramagdo, multiplos processos estéao
frequentemente na memoaria e prontos para executar. No entanto, em um sistema com
uma unica CPU, apenas um processo pode estar em execugdao em um determinado
instante. A decisdo de qual processo, dentre os prontos, deve ser alocado a CPU é
feita pelo escalonador de processos (ou escalonador de CPU). O escalonamento de
processos € uma funcdo fundamental dos sistemas operacionais, pois influencia
diretamente o desempenho do sistema, como o tempo de resposta, a vazao
(throughput) e a utilizagdo da CPU. Este capitulo explora os conceitos basicos do
escalonamento de processos, os critérios utilizados para avaliar algoritmos de
escalonamento, diversos algoritmos de escalonamento classicos e modernos, e como o
escalonamento é implementado nos sistemas operacionais Linux e Windows.

Conceitos Basicos de Escalonamento

e Ciclo de Burst de CPU-E/S (CPU-I/O Burst Cycle): A execugdo de um processo
consiste em uma alternancia de bursts (rajadas) de CPU e bursts de E/S. Um
processo executa por um tempo na CPU (CPU burst), depois realiza uma
operagao de E/S (I/O burst), espera pela conclusdo da E/S, e entdo retorna para
outro CPU burst, e assim por diante, até sua conclusao.

« Escalonador de CPU (CPU Scheduler): Seleciona um processo da fila de
processos prontos (ready queue) para alocar a CPU sempre que ela se torna
ociosa.

+ Escalonamento Preemptivo vs. Nao Preemptivo:

- Nao Preemptivo (ou Cooperativo): Uma vez que a CPU ¢é alocada a um
processo, ele a mantém até que termine sua execucdo ou mude para o


https://prettore.github.io/lectures.html

estado de espera (waiting state), por exemplo, ao solicitar uma operacéao de
E/S. Nao ha interrupgao forgada do processo em execucao.

- Preemptivo: O sistema operacional pode interromper um processo em
execugao (preemptar) e alocar a CPU a outro processo. Isso pode ocorrer,
por exemplo, quando um processo de maior prioridade se torna pronto ou
quando o quantum (fatia de tempo) de um processo expira em sistemas de
tempo compartilhado.

« Dispatcher: E o médulo que da o controle da CPU ao processo selecionado pelo
escalonador de curto prazo. Suas fungdes incluem: trocar o contexto, mudar para o
modo de usuario e saltar para o local apropriado no programa do usuario para
reiniciar sua execugao. O tempo gasto pelo dispatcher é chamado de laténcia do
dispatcher e deve ser o menor possivel.

Critérios de Escalonamento

Diferentes algoritmos de escalonamento tém propriedades distintas e podem favorecer
um conjunto de processos em detrimento de outros. Varios critérios podem ser usados
para comparar algoritmos de escalonamento de CPU:

» Utilizagcdo da CPU (CPU Utilization): Manter a CPU o mais ocupada possivel.
Idealmente, varia de 40% (sistemas levemente carregados) a 90% (sistemas
fortemente carregados).

e Vazao (Throughput): Numero de processos completados por unidade de tempo.
Para processos longos, a vazdo pode ser de um processo por hora; para
processos curtos, pode ser de dezenas de processos por segundo.

e Tempo de Turnaround (Turnaround Time): O intervalo de tempo desde a
submissdo de um processo até sua conclusdo. E a soma dos periodos gastos
esperando para entrar na memoria, esperando na fila de prontos, executando na
CPU e fazendo E/S.

e Tempo de Espera (Waiting Time): A soma dos periodos gastos esperando na fila
de prontos. O algoritmo de escalonamento n&o afeta o tempo que um processo
gasta executando ou fazendo E/S; ele afeta apenas o tempo de espera na fila de
prontos.

e Tempo de Resposta (Response Time): Em um sistema interativo, € o tempo
desde a submissédo de uma requisigdo até que a primeira resposta seja produzida
(ndo a saida completa). E o tempo que leva para comecar a responder, ndo o
tempo que leva para exibir a resposta.

O objetivo é geralmente maximizar a utilizagdo da CPU e a vazao, e minimizar o tempo
de turnaround, o tempo de espera e o tempo de resposta.

Algoritmos de Escalonamento

Existem diversos algoritmos de escalonamento, cada um com suas caracteristicas:



1. First-Come, First-Served (FCFS) / Primeiro a Chegar, Primeiro a Ser Servido:

O processo que requisita a CPU primeiro é alocado a CPU primeiro.
Implementado com uma fila FIFO (First-In, First-Out).

Nao preemptivo.
Vantagens: Simples de entender e implementar.

Desvantagens: O tempo médio de espera pode ser longo, especialmente
se processos curtos chegarem apds processos longos (efeito comboio -
convoy effect).

2. Shortest-Job-First (SJF) / Trabalho Mais Curto Primeiro:

Associa a cada processo o tamanho do seu proximo burst de CPU. A CPU é
alocada ao processo com o menor préximo burst de CPU.

Pode ser ndo preemptivo (uma vez que a CPU é dada a um processo, ele
nao pode ser preemptado até completar seu burst de CPU) ou preemptivo
(Shortest-Remaining-Time-First - SRTF: se um novo processo chega com
um burst de CPU menor que o tempo restante do processo atual, o
processo atual é preemptado).

Vantagens: Provadamente 6timo em termos de minimizar o tempo médio
de espera para um dado conjunto de processos.

Desvantagens: Dificil de conhecer o tamanho do préximo burst de CPU.
Pode levar a inanigéo (starvation) de processos longos se processos curtos
continuarem chegando.

3. [Escalonamento por Prioridade (Priority Scheduling):

Uma prioridade é associada a cada processo, e a CPU é alocada ao
processo com a maior prioridade (menor numero de prioridade geralmente
implica maior prioridade).

Pode ser nao preemptivo ou preemptivo (se um novo processo de maior
prioridade chega, ele preempta o processo atual).

SJF é um caso especial de escalonamento por prioridade onde a prioridade
€ o inverso do proximo burst de CPU previsto.

Desvantagens: Pode levar a inanigcdo de processos de baixa prioridade.
Uma solugédo € o aging, onde a prioridade de processos que esperam por
muito tempo é gradualmente aumentada.

4. Round Robin (RR):

Projetado especialmente para sistemas de tempo compartilhado.
Semelhante ao FCFS, mas com preempc¢ao adicionada para alternar entre
0S processos.

Uma pequena unidade de tempo, chamada quantum de tempo (time
quantum) ou fatia de tempo (time slice), € definida (geralmente de 10 a 100
milissegundos).

A fila de prontos é tratada como uma fila circular. O escalonador percorre a
fila de prontos, alocando a CPU a cada processo por um intervalo de tempo
de até 1 quantum. Se o processo ainda estiver rodando ao final do quantum,
ele é preemptado e colocado no final da fila de prontos.

Vantagens: Bom tempo de resposta para processos curtos.



Desvantagens: O desempenho depende muito do tamanho do quantum.
Se o quantum for muito grande, RR se comporta como FCFS. Se for muito
pequeno, a sobrecarga de trocas de contexto se torna excessiva.

Escalonamento por Miiltiplas Filas (Multilevel Queue Scheduling):

A fila de prontos €& particionada em varias filas separadas. Por exemplo,
uma fila para processos de primeiro plano (interativos) e outra para
processos de segundo plano (batch).

Cada fila tem seu proprio algoritmo de escalonamento (e.g., RR para
primeiro plano, FCFS para segundo plano).

O escalonamento entre as filas também € necessario, geralmente
implementado como escalonamento por prioridade fixa (e.g., servir todos os
processos da fila de primeiro plano antes dos da fila de segundo plano) ou
com divisdo de tempo entre as filas.

Desvantagens: Pouca flexibilidade; processos ndao podem mudar de fila.

Escalonamento por Multiplas Filas com Retroalimentacao (Multilevel
Feedback Queue Scheduling):

Linux

Permite que um processo se mova entre as varias filas.

A ideia é separar processos com diferentes caracteristicas de burst de CPU.
Se um processo usa muito tempo de CPU, ele sera movido para uma fila de
prioridade mais baixa. Se um processo espera muito tempo em uma fila de
baixa prioridade, ele pode ser movido para uma fila de prioridade mais alta
(aging).

E o algoritmo de escalonamento de CPU mais geral e também o mais
complexo. Os parametros que definem um escalonador de multiplas filas
com retroalimentagdo incluem: o numero de filas, o algoritmo de
escalonamento para cada fila, o método usado para determinar quando
promover um processo para uma fila de maior prioridade, o0 método usado
para determinar quando rebaixar um processo para uma fila de menor
prioridade, e o0 método usado para determinar qual fila um processo entrara
guando precisar de servico.

Escalonamento nos Sistemas Operacionais Linux e Windows

O escalonador do Linux evoluiu significativamente ao longo do tempo. Versées mais
antigas usavam um escalonador O(1) (tempo constante para selegdo de processo),
enquanto versdes mais recentes (a partir do kernel 2.6.23) utilizam o Completely Fair
Scheduler (CFS) para tarefas normais (ndao de tempo real).

Completely Fair Scheduler (CFS):

Projetado para ser justo, dando a cada processo uma porgao proporcional
do tempo da CPU.



Nao usa prioridades fixas ou fatias de tempo da maneira tradicional. Em vez
disso, mantém um “tempo de execugdo virtual” (vruntime) para cada
processo. O processo com 0 menor vruntime € escolhido para executar.

O vruntime de um processo aumenta a medida que ele executa. Processos
que executam por menos tempo ou que sao limitados por E/S terdo vruntime
menor e, portanto, maior chance de serem escalonados.

Usa uma arvore rubro-negra para armazenar 0S Pprocessos prontos,
ordenada por vruntime, permitindo a selecao eficiente do proximo processo.

« Escalonamento de Tempo Real no Linux:

Para processos com requisitos de tempo real, o Linux oferece politicas de
escalonamento como SCHED_FIFO (First-In, First-Out, preemptivo, baseado
em prioridade) e SCHED_RR (Round Robin, preemptivo, baseado em
prioridade com quantum).

Esses processos tém prioridade sobre os processos normais gerenciados
pelo CFS.

Windows

O Windows utiliza um escalonador preemptivo baseado em prioridades, com 32 niveis
de prioridade.

. Niveis de Prioridade:

Divididos em duas classes principais: classe de tempo real (prioridades
16-31) e classe de prioridade variavel (prioridades 1-15). A prioridade 0 é
reservada para a thread de pagina zero.

Dentro da classe de prioridade variavel, a prioridade de uma thread pode
mudar dinamicamente (priority boosting). Por exemplo, quando uma thread
completa uma operagao de E/S, sua prioridade pode ser temporariamente
aumentada para melhorar a responsividade.

e Quantum:

Cada thread tem um quantum de tempo. Quando o quantum de uma thread
expira, se houver outra thread de mesma prioridade pronta, ocorre uma
troca de contexto. Se ndo houver, a thread continua executando.

O valor do quantum pode variar dependendo da configuragdo do sistema
(e.g., otimizado para aplicagdes de servidor ou desktop) e da prioridade da
thread.

e Filas de Prontos: O Windows mantém uma fila de prontos para cada nivel de
prioridade. O escalonador sempre escolhe uma thread da fila de maior prioridade
nao vazia.

 Afinidade de Processador: Permite que threads sejam restringidas a executar em
um subconjunto especifico de processadores em sistemas multiprocessadores.



Conclusao

O escalonamento de processos € um componente critico dos sistemas operacionais,
determinando como o recurso mais fundamental, a CPU, é compartilhado entre as
tarefas concorrentes. A escolha de um algoritmo de escalonamento envolve um
trade-off entre varios critérios, como utilizagdo da CPU, vazao, tempo de turnaround,
tempo de espera e tempo de resposta. Algoritmos como FCFS, SJF, Prioridade e
Round Robin fornecem diferentes abordagens para esse problema, cada um com suas
préprias vantagens e desvantagens. Sistemas operacionais modernos como Linux e
Windows implementam algoritmos de escalonamento sofisticados (CFS no Linux,
escalonamento por prioridade multinivel no Windows) que tentam equilibrar justica,
eficiéncia e responsividade para uma ampla gama de cargas de trabalho, incluindo
tarefas interativas, batch e de tempo real. A compreensao desses algoritmos e de suas
implementagdes € essencial para otimizar o desempenho do sistema e desenvolver
aplicacdes eficientes.

Referéncias

« Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts
(10th ed.). Wiley.

+ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

« Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

* Russinovich, M. E., Solomon, D. A., & lonescu, A. (2012). Windows Internals, Part
1 (6th ed.). Microsoft Press.

Isencao de Responsabilidade:

Os autores deste documento no reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagdo dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagbes
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao conteudo aqui apresentado.



	Escalonamento de Processos 
	 

	Introdução 
	Conceitos Básicos de Escalonamento 

	Critérios de Escalonamento 
	Algoritmos de Escalonamento 
	Escalonamento nos Sistemas Operacionais Linux e Windows 
	Linux 
	Windows 

	Conclusão 
	Referências 

