https://prettore.qithub.io/lectures.html

Gerenciamento de Memoaria em Linux e Windows

Introdugéao
Conceitos Gerais e Abordagens
Linux: Gerenciamento de Memdria
Windows: Gerenciamento de Memodria
Comparativo e Conclusao
Referéncias

A B ON-_2 =

Introducao

Os sistemas operacionais Linux e Windows sdo amplamente utilizados em uma vasta
gama de dispositivos, desde servidores de alta performance e desktops até sistemas
embarcados. Ambos implementam mecanismos sofisticados de gerenciamento de
memoria para fornecer aos processos um ambiente de execucao estavel, eficiente e
seguro. Embora os conceitos fundamentais de gerenciamento de memodria, como
paginacdo e memoaria virtual, sejam comuns, as implementacbes especificas, as
estruturas de dados internas, as chamadas de sistema (APIs) e as politicas de
gerenciamento podem variar significativamente entre eles. Este capitulo explora como
o gerenciamento de memoria é realizado especificamente nos sistemas operacionais
Linux e Windows, detalhando seus conceitos, as chamadas de sistema disponiveis
para os desenvolvedores e aspectos de suas implementagdes internas. Compreender
essas especificidades é crucial para desenvolvedores de sistemas e aplicagbes que
buscam otimizar o uso de memdéria e 0 desempenho em cada plataforma.

Conceitos Gerais e Abordagens

Tanto Linux quanto Windows utilizam memoria virtual paginada como o principal
mecanismo de gerenciamento de memoaria. Isso permite que cada processo tenha seu
proprio espaco de enderecamento virtual privado, que € mapeado para a memoria
fisica (RAM) sob demanda. Ambos os sistemas também gerenciam a memoria fisica
dividindo-a em quadros (frames) e utilizam algoritmos de substituicdo de paginas
guando a memoaria fisica se torna escassa.

Linux: Gerenciamento de Memoria

O gerenciamento de memodria no Linux € complexo e evoluiu consideravelmente ao
longo das versdes do kernel. Ele é projetado para ser eficiente e escalavel em uma
ampla variedade de arquiteturas de hardware.

Principais Conceitos e Componentes:

https://prettore.github.io/lectures.html

Zonas de Memoéria (Memory Zones): O Linux divide a meméria fisica em zonas
(e.g., ZONE_DMA, ZONE_NORMAL, ZONE_HIGHMEM em arquiteturas de 32 bits)
para lidar com as particularidades de diferentes regides da memoria fisica e suas
capacidades de enderecamento por dispositivos de hardware.

Buddy System Allocator: Usado para alocar e desalocar blocos de paginas
fisicamente contiguas. Ele gerencia blocos de memodria de tamanhos que séo
poténcias de 2 (e.g., 1, 2, 4, 8, 16 paginas).

Slab Allocator (e suas variantes como SLUB, SLOB): Usado para alocar
memoria para objetos do kernel de tamanhos especificos e frequentemente
usados (e.g., estruturas de dados do kernel como task_struct, inode). Ele visa
reduzir a fragmentacéo interna e melhorar a eficiéncia da alocagao/desalocacgéo,
mantendo caches de objetos pré-inicializados.

Tabelas de Paginas: O Linux usa uma estrutura de tabela de paginas multinivel
(geralmente 3 ou 4 niveis em arquiteturas de 32 bits, e 4 ou 5 niveis em
arquiteturas de 64 bits) para mapear enderecos virtuais para enderegos fisicos.
Cada processo tem seu proprio conjunto de tabelas de paginas.

Page Cache: O Linux mantém um cache de paginas de disco na memodria RAM
para acelerar o acesso a arquivos e dados de dispositivos de bloco. As operacdes
de leitura e escrita em arquivos geralmente passam pelo page cache.

Swapping: Quando a memodria fisica esta cheia, paginas inativas podem ser
movidas para uma particdo de swap ou arquivo de swap no disco. O Linux usa
uma variagao do algoritmo LRU (Least Recently Used), como o algoritmo de duas
listas (ativo/inativo), para selecionar paginas candidatas a substitui¢cao.
Out-of-Memory (OOM) Killer: Se o sistema ficar criticamente sem memoria e nao
puder liberar mais paginas através do swapping, o OOM killer é invocado para
selecionar e matar um ou mais processos para liberar memoria e evitar um
travamento completo do sistema.

Copy-on-Write (COW): Usado durante a chamada fork(). Em vez de duplicar todas
as paginas do processo pai para o filho imediatamente, as paginas sao
compartilhadas. Uma cépia real da pagina s6 é feita se o pai ou o filho tentarem
modificar a pagina compartilhada.

Huge Pages (Paginas Enormes): Suporte para paginas de tamanhos maiores
(e.g., 2MB, 1GB) para reduzir a sobrecarga do TLB e das tabelas de paginas para
aplicagdes que manipulam grandes volumes de memoria.

Chamadas de Sistema (APIs) Relevantes no Linux:

brk() e sbrk(): Fungbes mais antigas para aumentar ou diminuir o tamanho do
segmento de dados (heap) do processo. sbrk(0) retorna o final atual do heap.
mmap(): Mapeia arquivos ou dispositivos na memoria. Pode ser usado para criar
regidbes de memoria compartilhada entre processos ou para alocar memoaria
anénima (ndo associada a um arquivo). E a principal forma moderna de alocacgéo
de memoria no Linux.

munmap(): Desmapeia uma regido de memdaria previamente mapeada por mmap().

mprotect(): Altera as permissdes de acesso (leitura, escrita, execugdo) de uma
regiao de memoéria mapeada.

mlock() e munlock(): Bloqueiam ou desbloqueiam paginas na memoria fisica,
impedindo que sejam paginadas para o disco. Util para aplicacdes de tempo real.
Iproc/[pid]/maps € /proc/[pid]/smaps: Arquivos virtuais no sistema de arquivos /proc
que fornecem informacdes detalhadas sobre o0 mapa de memadria de um processo
especifico.

Windows: Gerenciamento de Memoéria

O gerenciador de memoria do Windows € responsavel por fornecer servigos de
memodria virtual, gerenciar a memoria fisica e o pagefile.

Principais Conceitos e Componentes:

Virtual Address Descriptors (VADs): O gerenciador de memoéria do Windows usa
uma arvore de VADs auto-balanceada para cada processo, a fim de rastrear as
regides de enderecos virtuais que foram reservadas ou alocadas.

Page Frame Number (PFN) Database: Uma estrutura de dados central que
descreve o estado de cada pagina fisica na memodria (e.g., livre, em uso,
modificada, em transi¢ao).

Working Set: O conjunto de paginas fisicas atualmente residentes na memoaria
para um processo especifico. O Windows tenta manter o working set de cada
processo na memoria para minimizar as faltas de pagina. Existe um working set
minimo e maximo para cada processo.

Paging: O Windows usa um algoritmo de substituicdo de paginas que € uma
variagdo do LRU, baseado em um esquema de envelhecimento e no estado das
paginas (ativas/inativas). As paginas sao movidas para listas de espera (standby,
modified, modified no-write) antes de serem reutilizadas ou escritas no pagefile.
Pagefile (Arquivo de Paginacado): Onde as paginas modificadas que sao
removidas da memoria fisica sdo armazenadas. O Windows pode suportar
multiplos pagefiles.

Memory Sections (Segdoes de Memoéria): Objetos do kernel que representam
blocos de memoadria que podem ser compartilhados entre processos ou mapeados
para arquivos (memory-mapped files). A alocagdo de meméaria virtual no Windows
geralmente envolve a criagdo e o mapeamento de segdes.

Heaps: O Windows fornece gerenciamento de heap tanto no nivel do sistema
(para o kernel) quanto para processos de usuario. Cada processo tem um heap
padrao, e pode criar heaps privados adicionais.

Address Windowing Extensions (AWE): Permite que aplicacdes de 32 bits
acessem mais de 4GB de memédria fisica em sistemas que a suportam, mapeando

Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API):

VirtualAlloc(): Reserva ou comita uma regido de paginas no espago de
enderecamento virtual do processo.

e VirtualFree(): Libera ou descomita uma regido de paginas.
e VirtualProtect(): Altera a prote¢cao de acesso de uma regiao de paginas comitadas.

e VirtualQuery(): Retorna informagdes sobre uma regido de paginas no espago de
enderegamento virtual do processo.

e CreateFileMapping() € MapViewOfFile(): Usadas para criar e mapear secbes de
memoria (memory-mapped files), que podem ser usadas para memoria
compartilhada ou para mapear arquivos em memoaria.

e UnmapViewOfFile(): Desmapeia uma view de um arquivo mapeado.

e HeapCreate(), HeapAlloc(), HeapFree(), HeapDestroy(): Fungbes para criar e gerenciar
heaps privados no espaco do usuario.

Comparativo e Conclusao

Tanto Linux quanto Windows implementam sistemas de gerenciamento de memoria
virtual robustos e complexos, baseados em paginacdo sob demanda. Ambos utilizam
mecanismos como tabelas de paginas, TLBs, algoritmos de substituicdo de paginas e
swapping/paging para gerenciar eficientemente a memoaria fisica e fornecer um grande
espaco de enderecamento virtual para os processos.

As principais diferencas residem nas estruturas de dados internas especificas (e.g.,
zonas de memoria e buddy/slab no Linux vs. VADs e PFN database no Windows), nas
politicas de gerenciamento (e.g., algoritmos de substituigdo de paginas, gerenciamento
do working set) e nas APIs expostas aos desenvolvedores (mmap e familia no Linux
vs. VirtualAlloc e familia no Windows).

O Linux tende a ser mais transparente em suas implementagdes internas, com muito
do seu cdédigo fonte disponivel e extensivamente documentado pela comunidade. O
Windows, embora com partes de sua arquitetura bem documentadas (especialmente
através de livros como “Windows Internals”), mantém muitos detalhes de
implementagao proprietarios.

Ambos os sistemas evoluiram para suportar arquiteturas modernas de 64 bits, grandes
quantidades de RAM e funcionalidades avangadas como paginas enormes/grandes
para otimizar o desempenho de aplicacdes intensivas em memoria. A compreensao
das particularidades do gerenciamento de memoria em cada sistema operacional &
fundamental para o desenvolvimento de software eficiente e para a administracédo e
tuning de sistemas.

Referéncias
« Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts
(10th ed.). Wiley.

« Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

« Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

* Russinovich, M. E., Solomon, D. A., & lonescu, A. (2012). Windows Internals, Part
1 (6th ed.). Microsoft Press.

+ Bovet, D. P, & Cesati, M. (2005). Understanding the Linux Kernel (3rd ed.). O’'Reilly
Media.

Isencéo de Responsabilidade:

Os autores deste documento néo reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagdo dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais viola¢des
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao conteudo aqui apresentado.

	Gerenciamento de Memória em Linux e Windows
	Introdução
	Conceitos Gerais e Abordagens
	Linux: Gerenciamento de Memória
	Windows: Gerenciamento de Memória

	Comparativo e Conclusão
	Referências

