
1 

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de 
conteúdos bibliográficos disponíveis gratuitamente na Internet. 

Gerenciamento de Memória em Linux e Windows 
Introdução​ 1 

Conceitos Gerais e Abordagens​ 1 
Linux: Gerenciamento de Memória​ 2 
Windows: Gerenciamento de Memória​ 3 

Comparativo e Conclusão​ 4 
Referências​ 5 

Introdução 
Os sistemas operacionais Linux e Windows são amplamente utilizados em uma vasta 
gama de dispositivos, desde servidores de alta performance e desktops até sistemas 
embarcados. Ambos implementam mecanismos sofisticados de gerenciamento de 
memória para fornecer aos processos um ambiente de execução estável, eficiente e 
seguro. Embora os conceitos fundamentais de gerenciamento de memória, como 
paginação e memória virtual, sejam comuns, as implementações específicas, as 
estruturas de dados internas, as chamadas de sistema (APIs) e as políticas de 
gerenciamento podem variar significativamente entre eles. Este capítulo explora como 
o gerenciamento de memória é realizado especificamente nos sistemas operacionais 
Linux e Windows, detalhando seus conceitos, as chamadas de sistema disponíveis 
para os desenvolvedores e aspectos de suas implementações internas. Compreender 
essas especificidades é crucial para desenvolvedores de sistemas e aplicações que 
buscam otimizar o uso de memória e o desempenho em cada plataforma. 

Conceitos Gerais e Abordagens 
Tanto Linux quanto Windows utilizam memória virtual paginada como o principal 
mecanismo de gerenciamento de memória. Isso permite que cada processo tenha seu 
próprio espaço de endereçamento virtual privado, que é mapeado para a memória 
física (RAM) sob demanda. Ambos os sistemas também gerenciam a memória física 
dividindo-a em quadros (frames) e utilizam algoritmos de substituição de páginas 
quando a memória física se torna escassa. 

Linux: Gerenciamento de Memória 

O gerenciamento de memória no Linux é complexo e evoluiu consideravelmente ao 
longo das versões do kernel. Ele é projetado para ser eficiente e escalável em uma 
ampla variedade de arquiteturas de hardware. 

Principais Conceitos e Componentes: 

https://prettore.github.io/lectures.html


2 

•​ Zonas de Memória (Memory Zones): O Linux divide a memória física em zonas 
(e.g., ZONE_DMA, ZONE_NORMAL, ZONE_HIGHMEM em arquiteturas de 32 bits) 
para lidar com as particularidades de diferentes regiões da memória física e suas 
capacidades de endereçamento por dispositivos de hardware. 

•​ Buddy System Allocator: Usado para alocar e desalocar blocos de páginas 
fisicamente contíguas. Ele gerencia blocos de memória de tamanhos que são 
potências de 2 (e.g., 1, 2, 4, 8, 16 páginas). 

•​ Slab Allocator (e suas variantes como SLUB, SLOB): Usado para alocar 
memória para objetos do kernel de tamanhos específicos e frequentemente 
usados (e.g., estruturas de dados do kernel como task_struct, inode). Ele visa 
reduzir a fragmentação interna e melhorar a eficiência da alocação/desalocação, 
mantendo caches de objetos pré-inicializados. 

•​ Tabelas de Páginas: O Linux usa uma estrutura de tabela de páginas multinível 
(geralmente 3 ou 4 níveis em arquiteturas de 32 bits, e 4 ou 5 níveis em 
arquiteturas de 64 bits) para mapear endereços virtuais para endereços físicos. 
Cada processo tem seu próprio conjunto de tabelas de páginas. 

•​ Page Cache: O Linux mantém um cache de páginas de disco na memória RAM 
para acelerar o acesso a arquivos e dados de dispositivos de bloco. As operações 
de leitura e escrita em arquivos geralmente passam pelo page cache. 

•​ Swapping: Quando a memória física está cheia, páginas inativas podem ser 
movidas para uma partição de swap ou arquivo de swap no disco. O Linux usa 
uma variação do algoritmo LRU (Least Recently Used), como o algoritmo de duas 
listas (ativo/inativo), para selecionar páginas candidatas à substituição. 

•​ Out-of-Memory (OOM) Killer: Se o sistema ficar criticamente sem memória e não 
puder liberar mais páginas através do swapping, o OOM killer é invocado para 
selecionar e matar um ou mais processos para liberar memória e evitar um 
travamento completo do sistema. 

•​ Copy-on-Write (COW): Usado durante a chamada fork(). Em vez de duplicar todas 
as páginas do processo pai para o filho imediatamente, as páginas são 
compartilhadas. Uma cópia real da página só é feita se o pai ou o filho tentarem 
modificar a página compartilhada. 

•​ Huge Pages (Páginas Enormes): Suporte para páginas de tamanhos maiores 
(e.g., 2MB, 1GB) para reduzir a sobrecarga do TLB e das tabelas de páginas para 
aplicações que manipulam grandes volumes de memória. 

Chamadas de Sistema (APIs) Relevantes no Linux: 

•​ brk() e sbrk(): Funções mais antigas para aumentar ou diminuir o tamanho do 
segmento de dados (heap) do processo. sbrk(0) retorna o final atual do heap. 

•​ mmap(): Mapeia arquivos ou dispositivos na memória. Pode ser usado para criar 
regiões de memória compartilhada entre processos ou para alocar memória 
anônima (não associada a um arquivo). É a principal forma moderna de alocação 
de memória no Linux. 

•​ munmap(): Desmapeia uma região de memória previamente mapeada por mmap(). 



3 

•​ mprotect(): Altera as permissões de acesso (leitura, escrita, execução) de uma 
região de memória mapeada. 

•​ mlock() e munlock(): Bloqueiam ou desbloqueiam páginas na memória física, 
impedindo que sejam paginadas para o disco. Útil para aplicações de tempo real. 

•​ /proc/[pid]/maps e /proc/[pid]/smaps: Arquivos virtuais no sistema de arquivos /proc 
que fornecem informações detalhadas sobre o mapa de memória de um processo 
específico. 

Windows: Gerenciamento de Memória 

O gerenciador de memória do Windows é responsável por fornecer serviços de 
memória virtual, gerenciar a memória física e o pagefile. 

Principais Conceitos e Componentes: 

•​ Virtual Address Descriptors (VADs): O gerenciador de memória do Windows usa 
uma árvore de VADs auto-balanceada para cada processo, a fim de rastrear as 
regiões de endereços virtuais que foram reservadas ou alocadas. 

•​ Page Frame Number (PFN) Database: Uma estrutura de dados central que 
descreve o estado de cada página física na memória (e.g., livre, em uso, 
modificada, em transição). 

•​ Working Set: O conjunto de páginas físicas atualmente residentes na memória 
para um processo específico. O Windows tenta manter o working set de cada 
processo na memória para minimizar as faltas de página. Existe um working set 
mínimo e máximo para cada processo. 

•​ Paging: O Windows usa um algoritmo de substituição de páginas que é uma 
variação do LRU, baseado em um esquema de envelhecimento e no estado das 
páginas (ativas/inativas). As páginas são movidas para listas de espera (standby, 
modified, modified no-write) antes de serem reutilizadas ou escritas no pagefile. 

•​ Pagefile (Arquivo de Paginação): Onde as páginas modificadas que são 
removidas da memória física são armazenadas. O Windows pode suportar 
múltiplos pagefiles. 

•​ Memory Sections (Seções de Memória): Objetos do kernel que representam 
blocos de memória que podem ser compartilhados entre processos ou mapeados 
para arquivos (memory-mapped files). A alocação de memória virtual no Windows 
geralmente envolve a criação e o mapeamento de seções. 

•​ Heaps: O Windows fornece gerenciamento de heap tanto no nível do sistema 
(para o kernel) quanto para processos de usuário. Cada processo tem um heap 
padrão, e pode criar heaps privados adicionais. 

•​ Address Windowing Extensions (AWE): Permite que aplicações de 32 bits 
acessem mais de 4GB de memória física em sistemas que a suportam, mapeando 

 

Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API): 

•​ VirtualAlloc(): Reserva ou comita uma região de páginas no espaço de 
endereçamento virtual do processo. 



4 

•​ VirtualFree(): Libera ou descomita uma região de páginas. 
•​ VirtualProtect(): Altera a proteção de acesso de uma região de páginas comitadas. 
•​ VirtualQuery(): Retorna informações sobre uma região de páginas no espaço de 

endereçamento virtual do processo. 
•​ CreateFileMapping() e MapViewOfFile(): Usadas para criar e mapear seções de 

memória (memory-mapped files), que podem ser usadas para memória 
compartilhada ou para mapear arquivos em memória. 

•​ UnmapViewOfFile(): Desmapeia uma view de um arquivo mapeado. 
•​ HeapCreate(), HeapAlloc(), HeapFree(), HeapDestroy(): Funções para criar e gerenciar 

heaps privados no espaço do usuário. 

Comparativo e Conclusão 
Tanto Linux quanto Windows implementam sistemas de gerenciamento de memória 
virtual robustos e complexos, baseados em paginação sob demanda. Ambos utilizam 
mecanismos como tabelas de páginas, TLBs, algoritmos de substituição de páginas e 
swapping/paging para gerenciar eficientemente a memória física e fornecer um grande 
espaço de endereçamento virtual para os processos. 

As principais diferenças residem nas estruturas de dados internas específicas (e.g., 
zonas de memória e buddy/slab no Linux vs. VADs e PFN database no Windows), nas 
políticas de gerenciamento (e.g., algoritmos de substituição de páginas, gerenciamento 
do working set) e nas APIs expostas aos desenvolvedores (mmap e família no Linux 
vs. VirtualAlloc e família no Windows). 

O Linux tende a ser mais transparente em suas implementações internas, com muito 
do seu código fonte disponível e extensivamente documentado pela comunidade. O 
Windows, embora com partes de sua arquitetura bem documentadas (especialmente 
através de livros como “Windows Internals”), mantém muitos detalhes de 
implementação proprietários. 

Ambos os sistemas evoluíram para suportar arquiteturas modernas de 64 bits, grandes 
quantidades de RAM e funcionalidades avançadas como páginas enormes/grandes 
para otimizar o desempenho de aplicações intensivas em memória. A compreensão 
das particularidades do gerenciamento de memória em cada sistema operacional é 
fundamental para o desenvolvimento de software eficiente e para a administração e 
tuning de sistemas. 

Referências 
•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts 

(10th ed.). Wiley. 
•​ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson 

Education. 
•​ Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley 

Professional. 



5 

•​ Russinovich, M. E., Solomon, D. A., & Ionescu, A. (2012). Windows Internals, Part 
1 (6th ed.). Microsoft Press. 

•​ Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel (3rd ed.). O’Reilly 
Media. 

 
Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento 
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e 
fontes originais. 

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores 
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações 
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento. 

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de 
qualquer responsabilidade relacionada ao conteúdo aqui apresentado. 


	Gerenciamento de Memória em Linux e Windows 
	Introdução 
	Conceitos Gerais e Abordagens 
	Linux: Gerenciamento de Memória 
	Windows: Gerenciamento de Memória 


	Comparativo e Conclusão 
	Referências 

