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Introdução 
Os sistemas de arquivos são a interface primária através da qual os usuários e as 
aplicações interagem com os dados armazenados em dispositivos de armazenamento 
persistente. Tanto o Linux quanto o Windows, como sistemas operacionais modernos e 
amplamente utilizados, implementam sistemas de arquivos robustos e ricos em 
funcionalidades, cada um com suas próprias arquiteturas, tipos de sistemas de 
arquivos suportados e APIs. Enquanto o capítulo anterior discutiu os conceitos gerais 
de sistemas de arquivos, este capítulo foca nas implementações específicas e nas 
características dos sistemas de arquivos encontrados nos ambientes Linux e Windows. 
Abordaremos os principais sistemas de arquivos nativos e suportados por cada SO, 
suas estruturas internas, as chamadas de sistema (APIs) para manipulação de 
arquivos e diretórios, e como eles gerenciam os dados no disco. Compreender essas 
especificidades é essencial para desenvolvedores, administradores de sistemas e 
qualquer pessoa que precise gerenciar dados ou otimizar o desempenho de E/S 
nessas plataformas. 

Conceitos e Abstrações Comuns 
Ambos os sistemas operacionais utilizam abstrações para permitir que diferentes tipos 
de sistemas de arquivos coexistam e sejam acessados de maneira uniforme pelas 
aplicações. 

•​ Linux: Virtual File System (VFS) ou Virtual Filesystem Switch: O VFS é uma 
camada de abstração fundamental no kernel do Linux que fornece uma interface 
uniforme para todos os sistemas de arquivos. Ele define um conjunto comum de 
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operações (e.g., open, read, write, close) que as aplicações podem usar, 
independentemente do tipo de sistema de arquivos subjacente (e.g., ext4, XFS, 
NTFS, FAT). O VFS direciona essas chamadas para o driver do sistema de 
arquivos específico que gerencia o dispositivo de armazenamento. 

•​ Windows: Installable File System (IFS) Manager: O Windows utiliza um 
mecanismo semelhante, onde diferentes drivers de sistema de arquivos (e.g., para 
NTFS, FAT32, ReFS, e sistemas de arquivos de rede) podem ser instalados e 
gerenciados pelo I/O Manager. Isso permite que o Windows suporte múltiplos 
sistemas de arquivos de forma transparente para as aplicações que usam a Win32 
API para operações de arquivo. 

Sistemas de Arquivos no Linux 
O Linux é conhecido por seu suporte a uma vasta gama de sistemas de arquivos, 
desde os tradicionais sistemas de arquivos Unix até os mais modernos com journaling 
e funcionalidades avançadas. 

Principais Sistemas de Arquivos Suportados/Nativos 
•​ ext (Extended File System) Family: 

–​ ext2: Um dos primeiros sistemas de arquivos amplamente adotados no 
Linux. Robusto e estável, mas não possui journaling, o que pode levar a 
longos tempos de verificação (fsck) após uma falha no sistema. 

–​ ext3: Uma evolução do ext2 que adiciona journaling. O journaling melhora 
significativamente a velocidade de recuperação após falhas, registrando as 
alterações antes que sejam efetivamente escritas nos dados principais do 
sistema de arquivos. Oferece três modos de journaling: journal (dados e 
metadados), ordered (apenas metadados, mas garante que os dados sejam 
escritos antes dos metadados) e writeback (apenas metadados, com menor 
garantia de consistência em caso de falha). 

–​ ext4: O sucessor do ext3 e o sistema de arquivos padrão para muitas 
distribuições Linux. Inclui melhorias como suporte a volumes maiores e 
arquivos maiores, extents (para alocação contígua de blocos, melhorando o 
desempenho e reduzindo a fragmentação), alocação atrasada (delayed 
allocation), verificação de consistência mais rápida e journaling mais 
robusto. 

•​ XFS (Extent File System): Um sistema de arquivos de alto desempenho com 
journaling, originalmente desenvolvido pela Silicon Graphics (SGI). É conhecido 
por sua escalabilidade, bom desempenho com arquivos grandes e operações 
paralelas de E/S. Utiliza alocação baseada em extents e árvores B+ para gerenciar 
espaço livre e inodes. 

•​ Btrfs (B-tree File System): Um sistema de arquivos moderno com foco em 
funcionalidades avançadas, tolerância a falhas e facilidade de administração. 
Suporta copy-on-write (CoW) para todos os dados e metadados, snapshots (cópias 
instantâneas de baixo custo), subvolumes, RAID integrado, compressão 
transparente e verificação de integridade de dados. 



3 

•​ Outros Sistemas de Arquivos: O Linux também suporta muitos outros sistemas 
de arquivos, como JFS (Journaled File System da IBM), ReiserFS (conhecido por 
bom desempenho com arquivos pequenos, mas com desenvolvimento estagnado), 
F2FS (Flash-Friendly File System, otimizado para dispositivos de armazenamento 
baseados em flash NAND como SSDs), além de sistemas de arquivos de rede 
como NFS (Network File System) e CIFS/SMB (Common Internet File 
System/Server Message Block). 

Estruturas de Dados Comuns no Linux (conceitos do VFS e 
implementações típicas) 
•​ Superblock (Superbloco): Contém metadados críticos sobre o sistema de 

arquivos como um todo (e.g., tipo, tamanho, estado, número de blocos livres, 
número de inodes livres). 

•​ Inode (Index Node): Uma estrutura de dados que armazena os atributos de um 
arquivo (e.g., permissões, proprietário, tamanho, timestamps) e os ponteiros para 
os blocos de dados do arquivo. Cada arquivo no sistema de arquivos é 
representado por um inode. 

•​ Dentry (Directory Entry): Representa uma entrada de diretório, que mapeia um 
nome de arquivo para um inode. O kernel mantém um cache de dentries (dcache) 
para acelerar a tradução de nomes de caminho para inodes. 

•​ File Object (Objeto de Arquivo): Representa um arquivo aberto por um processo. 
Contém informações como o ponteiro de posição atual no arquivo e o modo de 
acesso. 

Chamadas de Sistema (APIs) Relevantes no Linux (Padrão POSIX) 
O Linux implementa as chamadas de sistema padrão POSIX para operações de 
arquivo: 

•​ open(): Abre ou cria um arquivo. 
•​ read(): Lê dados de um arquivo. 
•​ write(): Escreve dados em um arquivo. 
•​ close(): Fecha um arquivo aberto. 
•​ lseek(): Reposiciona o ponteiro de leitura/escrita do arquivo. 
•​ stat(), fstat(), lstat(): Obtêm informações (atributos) sobre um arquivo. 
•​ mkdir(): Cria um novo diretório. 
•​ rmdir(): Remove um diretório (geralmente deve estar vazio). 
•​ unlink(): Remove um nome (link) para um arquivo. Se for o último link, o arquivo é 

excluído. 
•​ rename(): Renomeia ou move um arquivo/diretório. 
•​ mount(): Monta um sistema de arquivos em um ponto específico da hierarquia de 

diretórios. 
•​ umount(): Desmonta um sistema de arquivos. 
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Sistemas de Arquivos no Windows 
O Windows tem seu próprio conjunto de sistemas de arquivos nativos, com o NTFS 
sendo o mais proeminente para instalações modernas. 

Principais Sistemas de Arquivos Suportados/Nativos 
•​ NTFS (New Technology File System): O sistema de arquivos padrão para todas 

as versões modernas do Windows (desde o Windows NT). É um sistema de 
arquivos robusto e rico em funcionalidades: 

–​ Journaling: Usa um log de transações ($LogFile) para garantir a rápida 
recuperação do sistema de arquivos em caso de falha. 

–​ Segurança: Suporta Listas de Controle de Acesso (ACLs) granulares para 
arquivos e diretórios, permitindo definir permissões detalhadas para 
usuários e grupos. 

–​ Master File Table (MFT): O coração do NTFS. A MFT é um arquivo que 
contém registros para todos os arquivos e diretórios no volume. Cada 
registro na MFT armazena os atributos do arquivo ou ponteiros para eles se 
forem muito grandes (atributos residentes vs. não residentes). 

–​ Compressão e Encriptação: Suporta compressão de arquivos e diretórios 
no nível do sistema de arquivos e Encrypting File System (EFS) para 
encriptação transparente. 

–​ Alternate Data Streams (ADS): Permite que múltiplos fluxos de dados 
sejam associados a um único nome de arquivo. 

–​ Hard Links e Symbolic Links (Junction Points, Symbolic Links): 
Suporta diferentes tipos de links. 

–​ Suporte a Arquivos Grandes e Volumes Grandes. 
•​ FAT (File Allocation Table) Family: 

–​ FAT12/FAT16: Sistemas de arquivos mais antigos, usados no MS-DOS e 
versões iniciais do Windows. Limitados em tamanho de volume e arquivo. 

–​ FAT32: Uma extensão do FAT16 que suporta volumes maiores e arquivos 
de até 4GB. Comumente usado para dispositivos de armazenamento 
removíveis (pen drives, cartões de memória) devido à sua ampla 
compatibilidade entre diferentes sistemas operacionais. 

–​ exFAT (Extended File Allocation Table): Projetado pela Microsoft como 
um sucessor do FAT32, otimizado para dispositivos de armazenamento 
flash. Remove muitas das limitações do FAT32 (e.g., tamanho de arquivo e 
volume muito maiores) e é suportado por versões mais recentes do 
Windows, macOS e Linux. 

•​ ReFS (Resilient File System): Introduzido com o Windows Server 2012, o ReFS 
foi projetado para maximizar a disponibilidade de dados, escalar eficientemente 
para grandes conjuntos de dados e fornecer integridade de dados (com verificação 
e correção de corrupção quando usado com Storage Spaces). Ele compartilha 
algum código com o NTFS, mas tem uma arquitetura diferente, focada na 
resiliência contra corrupção de dados. 
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Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API) 
O Windows fornece um conjunto abrangente de funções na Win32 API para operações 
de arquivo e diretório: 

•​ CreateFile(): Abre ou cria arquivos, pipes, dispositivos, etc. Função muito versátil. 
•​ ReadFile() e WriteFile(): Leem e escrevem dados de/para arquivos. 
•​ CloseHandle(): Fecha um handle de arquivo aberto (ou qualquer outro objeto do 

kernel). 
•​ SetFilePointer() ou SetFilePointerEx(): Reposiciona o ponteiro do arquivo. 
•​ GetFileAttributesEx() e SetFileAttributes(): Obtêm e definem atributos de arquivo. 
•​ CreateDirectory() e RemoveDirectory(): Criam e removem diretórios. 
•​ DeleteFile(): Exclui um arquivo. 
•​ MoveFile() ou MoveFileEx(): Renomeia ou move um arquivo/diretório. 
•​ FindFirstFile(), FindNextFile(), FindClose(): Usadas para listar o conteúdo de um 

diretório. 

Comparativo e Conclusão 
Tanto Linux quanto Windows oferecem sistemas de arquivos sofisticados, cada um com 
suas forças. O Linux, através do VFS, proporciona grande flexibilidade com suporte a 
uma miríade de sistemas de arquivos, sendo ext4 e XFS escolhas populares para 
desempenho e confiabilidade, enquanto Btrfs oferece funcionalidades avançadas. O 
Windows foca primariamente no NTFS para suas instalações de sistema, um sistema 
de arquivos maduro e rico em recursos, complementado pelo FAT32/exFAT para 
interoperabilidade e pelo ReFS para cenários que exigem alta resiliência. 

As APIs para manipulação de arquivos refletem as filosofias de design de cada 
sistema: o Linux adere ao padrão POSIX, promovendo portabilidade entre sistemas 
Unix-like, enquanto o Windows oferece a Win32 API, específica para sua plataforma. 

Ambos os sistemas operacionais continuam a evoluir seus subsistemas de arquivos 
para lidar com as crescentes demandas de armazenamento, desempenho e novas 
tecnologias de hardware, como SSDs e armazenamento em nuvem. A escolha do 
sistema de arquivos apropriado e a compreensão de como interagir com ele através 
das APIs do sistema operacional são cruciais para o desenvolvimento de aplicações 
eficientes e para a administração eficaz dos dados. 
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