
1

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de
conteúdos bibliográficos disponíveis gratuitamente na Internet.

Sistemas de Arquivos em Linux e Windows
Introdução​ 1

Conceitos e Abstrações Comuns​ 1

Sistemas de Arquivos no Linux​ 2

Principais Sistemas de Arquivos Suportados/Nativos​ 2

Estruturas de Dados Comuns no Linux (conceitos do VFS e implementações
típicas)​ 3

Chamadas de Sistema (APIs) Relevantes no Linux (Padrão POSIX)​ 3

Sistemas de Arquivos no Windows​ 4

Principais Sistemas de Arquivos Suportados/Nativos​ 4

Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API)​ 5

Comparativo e Conclusão​ 5

Referências​ 5

Introdução
Os sistemas de arquivos são a interface primária através da qual os usuários e as
aplicações interagem com os dados armazenados em dispositivos de armazenamento
persistente. Tanto o Linux quanto o Windows, como sistemas operacionais modernos e
amplamente utilizados, implementam sistemas de arquivos robustos e ricos em
funcionalidades, cada um com suas próprias arquiteturas, tipos de sistemas de
arquivos suportados e APIs. Enquanto o capítulo anterior discutiu os conceitos gerais
de sistemas de arquivos, este capítulo foca nas implementações específicas e nas
características dos sistemas de arquivos encontrados nos ambientes Linux e Windows.
Abordaremos os principais sistemas de arquivos nativos e suportados por cada SO,
suas estruturas internas, as chamadas de sistema (APIs) para manipulação de
arquivos e diretórios, e como eles gerenciam os dados no disco. Compreender essas
especificidades é essencial para desenvolvedores, administradores de sistemas e
qualquer pessoa que precise gerenciar dados ou otimizar o desempenho de E/S
nessas plataformas.

Conceitos e Abstrações Comuns
Ambos os sistemas operacionais utilizam abstrações para permitir que diferentes tipos
de sistemas de arquivos coexistam e sejam acessados de maneira uniforme pelas
aplicações.

•​ Linux: Virtual File System (VFS) ou Virtual Filesystem Switch: O VFS é uma
camada de abstração fundamental no kernel do Linux que fornece uma interface
uniforme para todos os sistemas de arquivos. Ele define um conjunto comum de

https://prettore.github.io/lectures.html

2

operações (e.g., open, read, write, close) que as aplicações podem usar,
independentemente do tipo de sistema de arquivos subjacente (e.g., ext4, XFS,
NTFS, FAT). O VFS direciona essas chamadas para o driver do sistema de
arquivos específico que gerencia o dispositivo de armazenamento.

•​ Windows: Installable File System (IFS) Manager: O Windows utiliza um
mecanismo semelhante, onde diferentes drivers de sistema de arquivos (e.g., para
NTFS, FAT32, ReFS, e sistemas de arquivos de rede) podem ser instalados e
gerenciados pelo I/O Manager. Isso permite que o Windows suporte múltiplos
sistemas de arquivos de forma transparente para as aplicações que usam a Win32
API para operações de arquivo.

Sistemas de Arquivos no Linux
O Linux é conhecido por seu suporte a uma vasta gama de sistemas de arquivos,
desde os tradicionais sistemas de arquivos Unix até os mais modernos com journaling
e funcionalidades avançadas.

Principais Sistemas de Arquivos Suportados/Nativos
•​ ext (Extended File System) Family:

–​ ext2: Um dos primeiros sistemas de arquivos amplamente adotados no
Linux. Robusto e estável, mas não possui journaling, o que pode levar a
longos tempos de verificação (fsck) após uma falha no sistema.

–​ ext3: Uma evolução do ext2 que adiciona journaling. O journaling melhora
significativamente a velocidade de recuperação após falhas, registrando as
alterações antes que sejam efetivamente escritas nos dados principais do
sistema de arquivos. Oferece três modos de journaling: journal (dados e
metadados), ordered (apenas metadados, mas garante que os dados sejam
escritos antes dos metadados) e writeback (apenas metadados, com menor
garantia de consistência em caso de falha).

–​ ext4: O sucessor do ext3 e o sistema de arquivos padrão para muitas
distribuições Linux. Inclui melhorias como suporte a volumes maiores e
arquivos maiores, extents (para alocação contígua de blocos, melhorando o
desempenho e reduzindo a fragmentação), alocação atrasada (delayed
allocation), verificação de consistência mais rápida e journaling mais
robusto.

•​ XFS (Extent File System): Um sistema de arquivos de alto desempenho com
journaling, originalmente desenvolvido pela Silicon Graphics (SGI). É conhecido
por sua escalabilidade, bom desempenho com arquivos grandes e operações
paralelas de E/S. Utiliza alocação baseada em extents e árvores B+ para gerenciar
espaço livre e inodes.

•​ Btrfs (B-tree File System): Um sistema de arquivos moderno com foco em
funcionalidades avançadas, tolerância a falhas e facilidade de administração.
Suporta copy-on-write (CoW) para todos os dados e metadados, snapshots (cópias
instantâneas de baixo custo), subvolumes, RAID integrado, compressão
transparente e verificação de integridade de dados.

3

•​ Outros Sistemas de Arquivos: O Linux também suporta muitos outros sistemas
de arquivos, como JFS (Journaled File System da IBM), ReiserFS (conhecido por
bom desempenho com arquivos pequenos, mas com desenvolvimento estagnado),
F2FS (Flash-Friendly File System, otimizado para dispositivos de armazenamento
baseados em flash NAND como SSDs), além de sistemas de arquivos de rede
como NFS (Network File System) e CIFS/SMB (Common Internet File
System/Server Message Block).

Estruturas de Dados Comuns no Linux (conceitos do VFS e
implementações típicas)
•​ Superblock (Superbloco): Contém metadados críticos sobre o sistema de

arquivos como um todo (e.g., tipo, tamanho, estado, número de blocos livres,
número de inodes livres).

•​ Inode (Index Node): Uma estrutura de dados que armazena os atributos de um
arquivo (e.g., permissões, proprietário, tamanho, timestamps) e os ponteiros para
os blocos de dados do arquivo. Cada arquivo no sistema de arquivos é
representado por um inode.

•​ Dentry (Directory Entry): Representa uma entrada de diretório, que mapeia um
nome de arquivo para um inode. O kernel mantém um cache de dentries (dcache)
para acelerar a tradução de nomes de caminho para inodes.

•​ File Object (Objeto de Arquivo): Representa um arquivo aberto por um processo.
Contém informações como o ponteiro de posição atual no arquivo e o modo de
acesso.

Chamadas de Sistema (APIs) Relevantes no Linux (Padrão POSIX)
O Linux implementa as chamadas de sistema padrão POSIX para operações de
arquivo:

•​ open(): Abre ou cria um arquivo.
•​ read(): Lê dados de um arquivo.
•​ write(): Escreve dados em um arquivo.
•​ close(): Fecha um arquivo aberto.
•​ lseek(): Reposiciona o ponteiro de leitura/escrita do arquivo.
•​ stat(), fstat(), lstat(): Obtêm informações (atributos) sobre um arquivo.
•​ mkdir(): Cria um novo diretório.
•​ rmdir(): Remove um diretório (geralmente deve estar vazio).
•​ unlink(): Remove um nome (link) para um arquivo. Se for o último link, o arquivo é

excluído.
•​ rename(): Renomeia ou move um arquivo/diretório.
•​ mount(): Monta um sistema de arquivos em um ponto específico da hierarquia de

diretórios.
•​ umount(): Desmonta um sistema de arquivos.

4

Sistemas de Arquivos no Windows
O Windows tem seu próprio conjunto de sistemas de arquivos nativos, com o NTFS
sendo o mais proeminente para instalações modernas.

Principais Sistemas de Arquivos Suportados/Nativos
•​ NTFS (New Technology File System): O sistema de arquivos padrão para todas

as versões modernas do Windows (desde o Windows NT). É um sistema de
arquivos robusto e rico em funcionalidades:

–​ Journaling: Usa um log de transações ($LogFile) para garantir a rápida
recuperação do sistema de arquivos em caso de falha.

–​ Segurança: Suporta Listas de Controle de Acesso (ACLs) granulares para
arquivos e diretórios, permitindo definir permissões detalhadas para
usuários e grupos.

–​ Master File Table (MFT): O coração do NTFS. A MFT é um arquivo que
contém registros para todos os arquivos e diretórios no volume. Cada
registro na MFT armazena os atributos do arquivo ou ponteiros para eles se
forem muito grandes (atributos residentes vs. não residentes).

–​ Compressão e Encriptação: Suporta compressão de arquivos e diretórios
no nível do sistema de arquivos e Encrypting File System (EFS) para
encriptação transparente.

–​ Alternate Data Streams (ADS): Permite que múltiplos fluxos de dados
sejam associados a um único nome de arquivo.

–​ Hard Links e Symbolic Links (Junction Points, Symbolic Links):
Suporta diferentes tipos de links.

–​ Suporte a Arquivos Grandes e Volumes Grandes.
•​ FAT (File Allocation Table) Family:

–​ FAT12/FAT16: Sistemas de arquivos mais antigos, usados no MS-DOS e
versões iniciais do Windows. Limitados em tamanho de volume e arquivo.

–​ FAT32: Uma extensão do FAT16 que suporta volumes maiores e arquivos
de até 4GB. Comumente usado para dispositivos de armazenamento
removíveis (pen drives, cartões de memória) devido à sua ampla
compatibilidade entre diferentes sistemas operacionais.

–​ exFAT (Extended File Allocation Table): Projetado pela Microsoft como
um sucessor do FAT32, otimizado para dispositivos de armazenamento
flash. Remove muitas das limitações do FAT32 (e.g., tamanho de arquivo e
volume muito maiores) e é suportado por versões mais recentes do
Windows, macOS e Linux.

•​ ReFS (Resilient File System): Introduzido com o Windows Server 2012, o ReFS
foi projetado para maximizar a disponibilidade de dados, escalar eficientemente
para grandes conjuntos de dados e fornecer integridade de dados (com verificação
e correção de corrupção quando usado com Storage Spaces). Ele compartilha
algum código com o NTFS, mas tem uma arquitetura diferente, focada na
resiliência contra corrupção de dados.

5

Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API)
O Windows fornece um conjunto abrangente de funções na Win32 API para operações
de arquivo e diretório:

•​ CreateFile(): Abre ou cria arquivos, pipes, dispositivos, etc. Função muito versátil.
•​ ReadFile() e WriteFile(): Leem e escrevem dados de/para arquivos.
•​ CloseHandle(): Fecha um handle de arquivo aberto (ou qualquer outro objeto do

kernel).
•​ SetFilePointer() ou SetFilePointerEx(): Reposiciona o ponteiro do arquivo.
•​ GetFileAttributesEx() e SetFileAttributes(): Obtêm e definem atributos de arquivo.
•​ CreateDirectory() e RemoveDirectory(): Criam e removem diretórios.
•​ DeleteFile(): Exclui um arquivo.
•​ MoveFile() ou MoveFileEx(): Renomeia ou move um arquivo/diretório.
•​ FindFirstFile(), FindNextFile(), FindClose(): Usadas para listar o conteúdo de um

diretório.

Comparativo e Conclusão
Tanto Linux quanto Windows oferecem sistemas de arquivos sofisticados, cada um com
suas forças. O Linux, através do VFS, proporciona grande flexibilidade com suporte a
uma miríade de sistemas de arquivos, sendo ext4 e XFS escolhas populares para
desempenho e confiabilidade, enquanto Btrfs oferece funcionalidades avançadas. O
Windows foca primariamente no NTFS para suas instalações de sistema, um sistema
de arquivos maduro e rico em recursos, complementado pelo FAT32/exFAT para
interoperabilidade e pelo ReFS para cenários que exigem alta resiliência.

As APIs para manipulação de arquivos refletem as filosofias de design de cada
sistema: o Linux adere ao padrão POSIX, promovendo portabilidade entre sistemas
Unix-like, enquanto o Windows oferece a Win32 API, específica para sua plataforma.

Ambos os sistemas operacionais continuam a evoluir seus subsistemas de arquivos
para lidar com as crescentes demandas de armazenamento, desempenho e novas
tecnologias de hardware, como SSDs e armazenamento em nuvem. A escolha do
sistema de arquivos apropriado e a compreensão de como interagir com ele através
das APIs do sistema operacional são cruciais para o desenvolvimento de aplicações
eficientes e para a administração eficaz dos dados.

Referências
•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts

(10th ed.). Wiley.
•​ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson

Education.

6

•​ Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

•​ Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel (3rd ed.). O’Reilly
Media.

•​ Russinovich, M. E., Solomon, D. A., & Ionescu, A. (2017). Windows Internals, Part
1 (7th ed.). Microsoft Press.

•​ Microsoft Docs. (Várias datas). File Systems Documentation. Recuperado de
https://docs.microsoft.com

•​ The Linux Kernel Archives. (Várias datas). Kernel Documentation. Recuperado de
https://www.kernel.org/doc/

Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e
fontes originais.

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento.

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao conteúdo aqui apresentado.

https://docs.microsoft.com
https://www.kernel.org/doc/

	Sistemas de Arquivos em Linux e Windows
	Introdução
	Conceitos e Abstrações Comuns

	Sistemas de Arquivos no Linux
	Principais Sistemas de Arquivos Suportados/Nativos
	Estruturas de Dados Comuns no Linux (conceitos do VFS e implementações típicas)
	Chamadas de Sistema (APIs) Relevantes no Linux (Padrão POSIX)

	Sistemas de Arquivos no Windows
	Principais Sistemas de Arquivos Suportados/Nativos
	Chamadas de Sistema (APIs) Relevantes no Windows (Win32 API)

	Comparativo e Conclusão
	Referências

