https://prettore.qithub.io/lectures.html

Sistemas para Multiprocessadores

Introdugéao

Hardware de Multiprocessadores

Tipos de Sistemas Operacionais para Multiprocessadores
Sincronizagdo em Multiprocessadores

Escalonamento em Multiprocessadores

Conclusao

Referéncias

A A b ON =2 =

Introducao

A computacdo com multiprocessadores, onde um unico sistema computacional possui
duas ou mais Unidades Centrais de Processamento (CPUs) que compartilham acesso
a memoria principal e periféricos, tornou-se o padrao na maioria dos dominios da
computacdo, desde servidores e desktops até dispositivos moéveis. Os sistemas
operacionais para multiprocessadores enfrentam desafios uUnicos e oferecem
oportunidades significativas para aumentar o desempenho, a vazao e a confiabilidade
em comparagao com sistemas monoprocessadores. Este capitulo explora o hardware
de multiprocessadores, os diferentes tipos de sistemas operacionais projetados para
eles, e as questdes criticas de sincronizagao e escalonamento de processos/threads
em ambientes multiprocessados. Compreender esses aspectos € fundamental para
projetar e utilizar eficientemente o poder do hardware paralelo moderno.

Hardware de Multiprocessadores

Os sistemas multiprocessadores podem ser classificados com base em como a
memoria € compartilhada e como os processadores s&o interconectados.

* Multiprocessamento Simétrico (Symmetric Multiprocessing - SMP):

— E a arquitetura mais comum para multiprocessadores modernos. Todas as
CPUs sao tratadas como iguais, e qualquer CPU pode executar qualquer
tarefa, incluindo cddigo do sistema operacional e processos de usuario.

— Todas as CPUs compartilham a mesma memoaria principal e dispositivos de
E/S, geralmente através de um barramento comum ou uma interconexao
mais complexa (e.g., crossbar switch, NUMA interconnect).

— Cada CPU pode ter seu préprio cache de alta velocidade (L1, L2), e pode
haver um cache compartilhado (L3) entre algumas ou todas as CPUs.
Manter a coeréncia entre esses caches (cache coherence) € um desafio de
hardware significativo.

https://prettore.github.io/lectures.html

Multiprocessamento Assimétrico (Asymmetric Multiprocessing - AMP):

— Uma CPU (mestre) controla o sistema, enquanto as outras CPUs (escravas)
executam tarefas atribuidas pelo mestre ou cédigo de usuario predefinido.
Menos comum em sistemas de propdsito geral hoje em dia.

Arquiteturas Multicore: Uma forma de SMP onde multiplos nucleos de
processamento (cores) sao integrados em um unico chip de CPU. Cada nucleo
aparece para o sistema operacional como uma CPU logica separada.
Arquiteturas NUMA (Non-Uniform Memory Access):

— Em sistemas SMP maiores, 0 acesso a memoéria pode se tornar um gargalo.
Em arquiteturas NUMA, a memoria é fisicamente distribuida entre os
processadores (ou grupos de processadores). Cada processador pode
acessar sua propria memoria local (né de memdéria) mais rapidamente do
que a memoria local de outros processadores (memoria remota).

— O SO precisa estar ciente da topologia NUMA para otimizar a alocagéo de
memoria € o escalonamento de threads (e.g., tentar alocar memoaria para
uma thread no mesmo n6 NUMA onde ela esta executando).

Coeréncia de Cache (Cache Coherence): Em sistemas com caches privados por
CPU, se multiplas CPUs armazenam em cache a mesma localizagdo de memoria,
uma modificagédo feita por uma CPU em seu cache deve ser propagada para os
outros caches (e para a memoaria principal) para garantir que todas as CPUs vejam
uma viséo consistente da memoria. Protocolos de coeréncia de cache (e.g., MESI)
sao implementados em hardware para gerenciar isso.

Tipos de Sistemas Operacionais para Multiprocessadores

O design do sistema operacional deve ser adaptado para explorar eficientemente o
hardware multiprocessador.

Cada CPU com seu Proprio SO (Master-Slave ou Assimétrico):

— Uma CPU atua como mestre, executando o SO e gerenciando as outras
CPUs (escravas) que executam apenas coédigo de usuario. Simples de
implementar a partir de um SO monoprocessador, mas o mestre pode se
tornar um gargalo e o sistema n&o é verdadeiramente simétrico.

SO Monolitico Simétrico (Symmetric Operating System):

— O kernel do SO pode ser executado em qualquer CPU. Todas as CPUs sao
tratadas de forma igual. Esta é a abordagem mais comum e flexivel.

- Desafios: Requer mecanismos de sincronizagdo cuidadosos dentro do
kernel para proteger estruturas de dados compartiihadas do acesso
concorrente por multiplas CPUs (e.g., spinlocks, mutexes do kernel).

— Granularidade do Locking:

» Big Kernel Lock (BKL): Uma abordagem mais antiga onde um unico
lock global protege todo o kernel. Apenas uma CPU pode estar
executando codigo do kernel por vez, limitando o paralelismo do
kernel.

 Fine-Grained Locking: Multiplos locks protegem diferentes partes
do kernel ou diferentes estruturas de dados. Permite maior
concorréncia dentro do kernel, mas é mais complexo de implementar
e depurar.

Sincronizagao em Multiprocessadores

A sincronizagcdo € ainda mais critica em sistemas multiprocessadores do que em
monoprocessadores, pois multiplas CPUs podem tentar acessar e modificar dados
compartilhados simultaneamente, levando a condi¢gdes de corrida no kernel ou em
aplicagdes multithreaded.

Spinlocks: Um tipo de lock onde uma thread que tenta adquirir um lock ja
ocupado simplesmente “gira” em um loop ocupado (busy-waiting), testando
repetidamente o lock até que ele se torne disponivel. Eficientes para secgdes
criticas muito curtas, onde o tempo de espera esperado € menor que o custo de
bloquear e reescalonar a thread. Em sistemas monoprocessadores, spinlocks néao
fazem sentido (a thread girando impediria a liberagdo do lock). Em
multiprocessadores, a thread que detém o lock pode estar executando em outra
CPU e libera-lo em breve.

Mutexes e Semaforos: Como em sistemas monoprocessadores, mas sua
implementacdo deve ser segura para multiprocessadores (e.g., usando instrucées
atdbmicas de hardware para manipulagao do estado do lock).

Barreiras: Usadas para sincronizar multiplas threads em um ponto especifico,
garantindo que todas as threads cheguem a barreira antes que qualquer uma
possa prosseguir. Comum em aplicagdes paralelas.

Read-Write Locks: Permitem acesso concorrente para multiplos leitores, mas
acesso exclusivo para escritores. Util para estruturas de dados que s3o lidas com
frequéncia, mas modificadas raramente.

Problemas de Sincronizagao Especificos de Multiprocessadores:

- Falsa Compartilhamento (False Sharing): Ocorre quando duas ou mais
threads em CPUs diferentes acessam variaveis diferentes que, por acaso,
residem na mesma linha de cache. Mesmo que as threads n&o estejam
compartilhando dados logicamente, as operagdes de coeréncia de cache
podem invalidar a linha de cache para outras CPUs, degradando o
desempenho.

- Escalabilidade dos Locks: A medida que o numero de CPUs aumenta, a
contencao por locks pode se tornar um gargalo significativo. Técnicas como
locks por CPU, algoritmos de locking sem espera (lock-free) ou
read-copy-update (RCU) sao usadas para melhorar a escalabilidade.

Read-Copy-Update (RCU): Um mecanismo de sincronizagdo avangado usado no
kernel do Linux. Permite que leitores acessem estruturas de dados compartilhadas
sem adquirir locks, enquanto atualizadores criam uma copia da estrutura,
modificam a copia e depois, atomicamente, publicam a nova versdo. Os leitores
que estavam usando a versdo antiga continuam a usa-la até terminarem, e a

memodria da versao antiga so é liberada apds todos os leitores existentes terem
concluido.

Escalonamento em Multiprocessadores

O escalonamento de threads em um sistema multiprocessador envolve decidir ndo
apenas qual thread executar, mas também em qual CPU executa-la.

Afinidade de Processador (Processor Affinity):

— Tentar manter uma thread executando na mesma CPU o maximo possivel.
Isso € benéfico porque a thread pode ter dados em cache naquela CPU
(cache quente), e mové-la para outra CPU exigiria que o cache da nova
CPU fosse preenchido (cache frio), causando degradagédo de desempenho.

- Afinidade Suave (Soft Affinity): O SO tenta manter a thread na mesma
CPU, mas nao garante.

- Afinidade Rigida (Hard Affinity): Permite que um processo especifique em
qual conjunto de CPUs suas threads podem executar.

Balanceamento de Carga (Load Balancing):

— Distribuir a carga de trabalho (threads prontas) de forma equilibrada entre
todas as CPUs para maximizar a utilizagao e o paralelismo.

— Pode entrar em conflito com a afinidade de processador (mover uma thread
para outra CPU para balancear a carga pode invalidar seu cache).

- Push Migration: Um processo periddico verifica a carga em cada CPU e,
se encontrar um desequilibrio, move (empurra) threads de CPUs
sobrecarregadas para CPUs ociosas ou menos carregadas.

- Pull Migration: Uma CPU ociosa puxa uma tarefa de uma CPU ocupada.

Escalonamento Consciente de NUMA (NUMA-Aware Scheduling): Em
sistemas NUMA, o escalonador tenta colocar uma thread na CPU que esta no
mesmo n6 de memoria onde os dados da thread estao alocados, para minimizar a
laténcia de acesso a memdria remota.

Escalonamento Gang (Gang Scheduling): Usado para aplicagbes paralelas
onde as threads cooperam intensamente. Tenta agendar todas as threads de um
‘gang” (grupo de threads cooperantes) para executar simultaneamente em
diferentes CPUs. Se algumas threads do gang nao puderem ser agendadas, as
outras também podem ser bloqueadas para evitar que girem esperando pelas
threads ndo agendadas.

Simultaneous Multithreading (SMT) / Hyper-Threading: Uma técnica de
hardware onde uma unica CPU fisica pode manter o estado de multiplas threads
l6gicas e alternar rapidamente entre elas (ou executar partes delas em paralelo se
houver unidades de execucgéo duplicadas). Do ponto de vista do SO, cada thread
l6gica aparece como uma CPU separada. O escalonador deve estar ciente do
SMT para tomar decisbes eficientes (e.g., preferir escalonar threads em CPUs
fisicas diferentes antes de usar multiplas threads I6gicas na mesma CPU fisica,
para evitar competi¢do por recursos dentro do mesmo nucleo).

Conclusao

Os sistemas operacionais para multiprocessadores sdo essenciais para explorar o
poder do hardware paralelo moderno. Eles devem gerenciar eficientemente o acesso
concorrente a recursos compartilhados através de mecanismos de sincronizagao
robustos e escalaveis, como spinlocks e RCU, e devem implementar politicas de
escalonamento inteligentes que considerem a afinidade de processador, o
balanceamento de carga e as caracteristicas da arquitetura subjacente (como NUMA e
SMT). O design de um SO multiprocessador envolve um trade-off constante entre
complexidade, desempenho e escalabilidade. A medida que o nimero de nucleos por
chip continua a aumentar, os desafios e a importéncia do design eficiente de SOs para
multiprocessadores s6 tendem a crescer.

Referéncias

+ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts
(10th ed.). Wiley.

« Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

« Stallings, W. (2018). Operating Systems: Internals and Design Principles (9th ed.).
Pearson.

 McKenney, P. E. (2013). Is Parallel Programming Hard, And, If So, What Can You
Do About It?. (Disponivel online, foca em RCU e outros tépicos de concorréncia)

« Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley
Professional. (Capitulos sobre sincronizagcéo e escalonamento no Linux)

. Russinovich, M. E., Solomon, D. A., & lonescu, A. (2012). Windows Internals, Part
1 & 2. Microsoft Press. (Detalhes sobre multiprocessamento e escalonamento no
Windows)

Isencao de Responsabilidade:

Os autores deste documento no reivindicam a autoria do conteudo original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagdo comercial ou distribuigdo do conteudo aqui compilado deve ser feita com a devida autorizagdo dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagbes
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao conteudo aqui apresentado.

	Sistemas para Multiprocessadores
	Introdução
	Hardware de Multiprocessadores
	Tipos de Sistemas Operacionais para Multiprocessadores
	Sincronização em Multiprocessadores
	Escalonamento em Multiprocessadores
	Conclusão
	Referências

