
1 

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de 
conteúdos bibliográficos disponíveis gratuitamente na Internet. 

Sistemas para Multiprocessadores 
Introdução​ 1 
Hardware de Multiprocessadores​ 1 
Tipos de Sistemas Operacionais para Multiprocessadores​ 2 
Sincronização em Multiprocessadores​ 3 
Escalonamento em Multiprocessadores​ 4 
Conclusão​ 5 
Referências​ 5 

Introdução 
A computação com multiprocessadores, onde um único sistema computacional possui 
duas ou mais Unidades Centrais de Processamento (CPUs) que compartilham acesso 
à memória principal e periféricos, tornou-se o padrão na maioria dos domínios da 
computação, desde servidores e desktops até dispositivos móveis. Os sistemas 
operacionais para multiprocessadores enfrentam desafios únicos e oferecem 
oportunidades significativas para aumentar o desempenho, a vazão e a confiabilidade 
em comparação com sistemas monoprocessadores. Este capítulo explora o hardware 
de multiprocessadores, os diferentes tipos de sistemas operacionais projetados para 
eles, e as questões críticas de sincronização e escalonamento de processos/threads 
em ambientes multiprocessados. Compreender esses aspectos é fundamental para 
projetar e utilizar eficientemente o poder do hardware paralelo moderno. 

Hardware de Multiprocessadores 
Os sistemas multiprocessadores podem ser classificados com base em como a 
memória é compartilhada e como os processadores são interconectados. 

•​ Multiprocessamento Simétrico (Symmetric Multiprocessing - SMP): 
–​ É a arquitetura mais comum para multiprocessadores modernos. Todas as 

CPUs são tratadas como iguais, e qualquer CPU pode executar qualquer 
tarefa, incluindo código do sistema operacional e processos de usuário. 

–​ Todas as CPUs compartilham a mesma memória principal e dispositivos de 
E/S, geralmente através de um barramento comum ou uma interconexão 
mais complexa (e.g., crossbar switch, NUMA interconnect). 

–​ Cada CPU pode ter seu próprio cache de alta velocidade (L1, L2), e pode 
haver um cache compartilhado (L3) entre algumas ou todas as CPUs. 
Manter a coerência entre esses caches (cache coherence) é um desafio de 
hardware significativo. 

https://prettore.github.io/lectures.html


2 

•​ Multiprocessamento Assimétrico (Asymmetric Multiprocessing - AMP): 
–​ Uma CPU (mestre) controla o sistema, enquanto as outras CPUs (escravas) 

executam tarefas atribuídas pelo mestre ou código de usuário predefinido. 
Menos comum em sistemas de propósito geral hoje em dia. 

•​ Arquiteturas Multicore: Uma forma de SMP onde múltiplos núcleos de 
processamento (cores) são integrados em um único chip de CPU. Cada núcleo 
aparece para o sistema operacional como uma CPU lógica separada. 

•​ Arquiteturas NUMA (Non-Uniform Memory Access): 
–​ Em sistemas SMP maiores, o acesso à memória pode se tornar um gargalo. 

Em arquiteturas NUMA, a memória é fisicamente distribuída entre os 
processadores (ou grupos de processadores). Cada processador pode 
acessar sua própria memória local (nó de memória) mais rapidamente do 
que a memória local de outros processadores (memória remota). 

–​ O SO precisa estar ciente da topologia NUMA para otimizar a alocação de 
memória e o escalonamento de threads (e.g., tentar alocar memória para 
uma thread no mesmo nó NUMA onde ela está executando). 

•​ Coerência de Cache (Cache Coherence): Em sistemas com caches privados por 
CPU, se múltiplas CPUs armazenam em cache a mesma localização de memória, 
uma modificação feita por uma CPU em seu cache deve ser propagada para os 
outros caches (e para a memória principal) para garantir que todas as CPUs vejam 
uma visão consistente da memória. Protocolos de coerência de cache (e.g., MESI) 
são implementados em hardware para gerenciar isso. 

Tipos de Sistemas Operacionais para Multiprocessadores 
O design do sistema operacional deve ser adaptado para explorar eficientemente o 
hardware multiprocessador. 

1.​ Cada CPU com seu Próprio SO (Master-Slave ou Assimétrico): 
–​ Uma CPU atua como mestre, executando o SO e gerenciando as outras 

CPUs (escravas) que executam apenas código de usuário. Simples de 
implementar a partir de um SO monoprocessador, mas o mestre pode se 
tornar um gargalo e o sistema não é verdadeiramente simétrico. 

2.​ SO Monolítico Simétrico (Symmetric Operating System): 
–​ O kernel do SO pode ser executado em qualquer CPU. Todas as CPUs são 

tratadas de forma igual. Esta é a abordagem mais comum e flexível. 
–​ Desafios: Requer mecanismos de sincronização cuidadosos dentro do 

kernel para proteger estruturas de dados compartilhadas do acesso 
concorrente por múltiplas CPUs (e.g., spinlocks, mutexes do kernel). 

–​ Granularidade do Locking: 
•​ Big Kernel Lock (BKL): Uma abordagem mais antiga onde um único 

lock global protege todo o kernel. Apenas uma CPU pode estar 
executando código do kernel por vez, limitando o paralelismo do 
kernel. 



3 

•​ Fine-Grained Locking: Múltiplos locks protegem diferentes partes 
do kernel ou diferentes estruturas de dados. Permite maior 
concorrência dentro do kernel, mas é mais complexo de implementar 
e depurar. 

Sincronização em Multiprocessadores 
A sincronização é ainda mais crítica em sistemas multiprocessadores do que em 
monoprocessadores, pois múltiplas CPUs podem tentar acessar e modificar dados 
compartilhados simultaneamente, levando a condições de corrida no kernel ou em 
aplicações multithreaded. 

•​ Spinlocks: Um tipo de lock onde uma thread que tenta adquirir um lock já 
ocupado simplesmente “gira” em um loop ocupado (busy-waiting), testando 
repetidamente o lock até que ele se torne disponível. Eficientes para seções 
críticas muito curtas, onde o tempo de espera esperado é menor que o custo de 
bloquear e reescalonar a thread. Em sistemas monoprocessadores, spinlocks não 
fazem sentido (a thread girando impediria a liberação do lock). Em 
multiprocessadores, a thread que detém o lock pode estar executando em outra 
CPU e liberá-lo em breve. 

•​ Mutexes e Semáforos: Como em sistemas monoprocessadores, mas sua 
implementação deve ser segura para multiprocessadores (e.g., usando instruções 
atômicas de hardware para manipulação do estado do lock). 

•​ Barreiras: Usadas para sincronizar múltiplas threads em um ponto específico, 
garantindo que todas as threads cheguem à barreira antes que qualquer uma 
possa prosseguir. Comum em aplicações paralelas. 

•​ Read-Write Locks: Permitem acesso concorrente para múltiplos leitores, mas 
acesso exclusivo para escritores. Útil para estruturas de dados que são lidas com 
frequência, mas modificadas raramente. 

•​ Problemas de Sincronização Específicos de Multiprocessadores: 
–​ Falsa Compartilhamento (False Sharing): Ocorre quando duas ou mais 

threads em CPUs diferentes acessam variáveis diferentes que, por acaso, 
residem na mesma linha de cache. Mesmo que as threads não estejam 
compartilhando dados logicamente, as operações de coerência de cache 
podem invalidar a linha de cache para outras CPUs, degradando o 
desempenho. 

–​ Escalabilidade dos Locks: À medida que o número de CPUs aumenta, a 
contenção por locks pode se tornar um gargalo significativo. Técnicas como 
locks por CPU, algoritmos de locking sem espera (lock-free) ou 
read-copy-update (RCU) são usadas para melhorar a escalabilidade. 

•​ Read-Copy-Update (RCU): Um mecanismo de sincronização avançado usado no 
kernel do Linux. Permite que leitores acessem estruturas de dados compartilhadas 
sem adquirir locks, enquanto atualizadores criam uma cópia da estrutura, 
modificam a cópia e depois, atomicamente, publicam a nova versão. Os leitores 
que estavam usando a versão antiga continuam a usá-la até terminarem, e a 



4 

memória da versão antiga só é liberada após todos os leitores existentes terem 
concluído. 

Escalonamento em Multiprocessadores 
O escalonamento de threads em um sistema multiprocessador envolve decidir não 
apenas qual thread executar, mas também em qual CPU executá-la. 

•​ Afinidade de Processador (Processor Affinity): 
–​ Tentar manter uma thread executando na mesma CPU o máximo possível. 

Isso é benéfico porque a thread pode ter dados em cache naquela CPU 
(cache quente), e movê-la para outra CPU exigiria que o cache da nova 
CPU fosse preenchido (cache frio), causando degradação de desempenho. 

–​ Afinidade Suave (Soft Affinity): O SO tenta manter a thread na mesma 
CPU, mas não garante. 

–​ Afinidade Rígida (Hard Affinity): Permite que um processo especifique em 
qual conjunto de CPUs suas threads podem executar. 

•​ Balanceamento de Carga (Load Balancing): 
–​ Distribuir a carga de trabalho (threads prontas) de forma equilibrada entre 

todas as CPUs para maximizar a utilização e o paralelismo. 
–​ Pode entrar em conflito com a afinidade de processador (mover uma thread 

para outra CPU para balancear a carga pode invalidar seu cache). 
–​ Push Migration: Um processo periódico verifica a carga em cada CPU e, 

se encontrar um desequilíbrio, move (empurra) threads de CPUs 
sobrecarregadas para CPUs ociosas ou menos carregadas. 

–​ Pull Migration: Uma CPU ociosa puxa uma tarefa de uma CPU ocupada. 
•​ Escalonamento Consciente de NUMA (NUMA-Aware Scheduling): Em 

sistemas NUMA, o escalonador tenta colocar uma thread na CPU que está no 
mesmo nó de memória onde os dados da thread estão alocados, para minimizar a 
latência de acesso à memória remota. 

•​ Escalonamento Gang (Gang Scheduling): Usado para aplicações paralelas 
onde as threads cooperam intensamente. Tenta agendar todas as threads de um 
“gang” (grupo de threads cooperantes) para executar simultaneamente em 
diferentes CPUs. Se algumas threads do gang não puderem ser agendadas, as 
outras também podem ser bloqueadas para evitar que girem esperando pelas 
threads não agendadas. 

•​ Simultaneous Multithreading (SMT) / Hyper-Threading: Uma técnica de 
hardware onde uma única CPU física pode manter o estado de múltiplas threads 
lógicas e alternar rapidamente entre elas (ou executar partes delas em paralelo se 
houver unidades de execução duplicadas). Do ponto de vista do SO, cada thread 
lógica aparece como uma CPU separada. O escalonador deve estar ciente do 
SMT para tomar decisões eficientes (e.g., preferir escalonar threads em CPUs 
físicas diferentes antes de usar múltiplas threads lógicas na mesma CPU física, 
para evitar competição por recursos dentro do mesmo núcleo). 



5 

Conclusão 
Os sistemas operacionais para multiprocessadores são essenciais para explorar o 
poder do hardware paralelo moderno. Eles devem gerenciar eficientemente o acesso 
concorrente a recursos compartilhados através de mecanismos de sincronização 
robustos e escaláveis, como spinlocks e RCU, e devem implementar políticas de 
escalonamento inteligentes que considerem a afinidade de processador, o 
balanceamento de carga e as características da arquitetura subjacente (como NUMA e 
SMT). O design de um SO multiprocessador envolve um trade-off constante entre 
complexidade, desempenho e escalabilidade. À medida que o número de núcleos por 
chip continua a aumentar, os desafios e a importância do design eficiente de SOs para 
multiprocessadores só tendem a crescer. 

Referências 
•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts 

(10th ed.). Wiley. 
•​ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson 

Education. 
•​ Stallings, W. (2018). Operating Systems: Internals and Design Principles (9th ed.). 

Pearson. 
•​ McKenney, P. E. (2013). Is Parallel Programming Hard, And, If So, What Can You 

Do About It?. (Disponível online, foca em RCU e outros tópicos de concorrência) 
•​ Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley 

Professional. (Capítulos sobre sincronização e escalonamento no Linux) 
•​ Russinovich, M. E., Solomon, D. A., & Ionescu, A. (2012). Windows Internals, Part 

1 & 2. Microsoft Press. (Detalhes sobre multiprocessamento e escalonamento no 
Windows) 

 
Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento 
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e 
fontes originais. 

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores 
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações 
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento. 

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de 
qualquer responsabilidade relacionada ao conteúdo aqui apresentado. 


	Sistemas para Multiprocessadores 
	Introdução 
	Hardware de Multiprocessadores 
	Tipos de Sistemas Operacionais para Multiprocessadores 
	Sincronização em Multiprocessadores 
	Escalonamento em Multiprocessadores 
	Conclusão 
	Referências 

