
1 

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de 
conteúdos bibliográficos disponíveis gratuitamente na Internet. 

Sistemas para Multicomputadores 
Introdução​ 1 
Hardware de Multicomputadores​ 1 
Comunicação em Multicomputadores​ 2 

Passagem de Mensagens (Message Passing)​ 2 
Chamadas Remotas de Procedimentos (Remote Procedure Calls - RPC)​ 3 
Memória Compartilhada Distribuída (Distributed Shared Memory - DSM)​ 3 

Escalonamento em Multicomputadores​ 4 
Conclusão​ 5 
Referências​ 5 
 

Introdução 
Enquanto os sistemas multiprocessadores envolvem múltiplas CPUs compartilhando 
memória dentro de um único sistema computacional, os sistemas para 
multicomputadores (também conhecidos como sistemas distribuídos ou clusters) 
consistem em múltiplos computadores independentes (cada um com sua própria CPU, 
memória e, possivelmente, disco) interconectados por uma rede de comunicação. Cada 
computador (nó) executa seu próprio sistema operacional (ou uma instância dele). A 
principal característica é que não há memória compartilhada entre os nós no nível de 
hardware; a comunicação entre eles ocorre exclusivamente através da troca de 
mensagens pela rede. Os sistemas para multicomputadores são usados para alcançar 
alta performance (computação de alto desempenho - HPC), alta disponibilidade, 
escalabilidade e compartilhamento de recursos. Este capítulo explora o hardware de 
multicomputadores, os mecanismos de comunicação, como Chamadas Remotas de 
Procedimentos (RPC) e Memória Compartilhada Distribuída (DSM), e as considerações 
de escalonamento nesses ambientes. 

Hardware de Multicomputadores 
Um sistema multicomputador é uma coleção de nós computacionais autônomos 
conectados por uma rede. 

•​ Nós (Nodes): Cada nó é um computador completo, com seu processador (ou 
múltiplos processadores/núcleos), memória local e, opcionalmente, 
armazenamento local. Os nós podem ser homogêneos (todos com hardware e SO 
idênticos) ou heterogêneos. 

https://prettore.github.io/lectures.html


2 

•​ Rede de Interconexão (Interconnection Network): Conecta os nós e permite a 
troca de mensagens. A topologia da rede (e.g., barramento, anel, malha, 
hipercubo, switch) e a tecnologia (e.g., Ethernet, InfiniBand, Myrinet) impactam 
significativamente o desempenho e a escalabilidade do sistema. 

–​ Latência: O tempo para enviar uma mensagem vazia de um nó para outro. 
–​ Largura de Banda (Bandwidth): A taxa máxima na qual os dados podem 

ser transferidos pela rede. 
•​ Tipos de Sistemas Multicomputador: 

–​ Clusters: Um grupo de computadores (geralmente PCs ou estações de 
trabalho commodity) conectados por uma rede local de alta velocidade 
(LAN), trabalhando juntos como um único recurso computacional. 
Frequentemente usados para HPC, balanceamento de carga e alta 
disponibilidade. 

–​ Grids Computacionais (Computational Grids): Sistemas distribuídos em 
larga escala, geograficamente dispersos, que agregam recursos de 
múltiplos domínios administrativos para resolver problemas complexos. 
Envolvem heterogeneidade e questões de segurança mais complexas. 

–​ Sistemas Peer-to-Peer (P2P): Sistemas distribuídos onde todos os nós 
(peers) têm capacidades e responsabilidades equivalentes, comunicando-se 
diretamente uns com os outros sem um servidor central. Usados para 
compartilhamento de arquivos, streaming, etc. 

Comunicação em Multicomputadores 
Como não há memória compartilhada diretamente entre os nós, a comunicação é 
baseada na passagem de mensagens pela rede. Vários paradigmas e mecanismos de 
comunicação são usados. 

Passagem de Mensagens (Message Passing) 
É o modelo fundamental de comunicação em multicomputadores. Processos em 
diferentes nós se comunicam enviando e recebendo mensagens explicitamente. 

•​ Primitivas: send(destination, message) e receive(source, buffer). 
•​ Interface de Passagem de Mensagens (Message Passing Interface - MPI): Um 

padrão amplamente adotado para programação de passagem de mensagens em 
computação paralela. MPI define uma biblioteca de funções para C, C++ e Fortran 
que permite aos programadores escrever aplicações portáteis que podem rodar 
em uma variedade de arquiteturas de multicomputadores. MPI lida com a 
inicialização, comunicação ponto a ponto, operações coletivas (e.g., broadcast, 
reduce, scatter, gather), sincronização e topologias virtuais. 

•​ Sockets: Uma interface de programação de rede de baixo nível (originalmente do 
Berkeley Unix) que permite a comunicação entre processos na mesma máquina ou 
em máquinas diferentes através de uma rede (usando protocolos como TCP/IP ou 
UDP/IP). Sockets fornecem um ponto final para a comunicação. 



3 

Chamadas Remotas de Procedimentos (Remote Procedure Calls - 
RPC) 
RPC é um paradigma de comunicação de mais alto nível que permite que um processo 
em um nó chame um procedimento (ou função) que é executado em outro nó, como se 
fosse uma chamada de procedimento local. O objetivo é abstrair a comunicação de 
rede. 

•​ Funcionamento: 
1.​ O processo cliente chama um procedimento stub no lado do cliente. 
2.​ O stub do cliente empacota (marshals) os parâmetros da chamada em uma 

mensagem e a envia para o servidor. 
3.​ Um stub do servidor no nó remoto recebe a mensagem, desempacota 

(unmarshals) os parâmetros e chama o procedimento real no servidor. 
4.​ Quando o procedimento no servidor retorna, o stub do servidor empacota o 

valor de retorno em uma mensagem e a envia de volta para o cliente. 
5.​ O stub do cliente recebe a mensagem de resposta, desempacota o valor de 

retorno e o retorna para o processo cliente. 
•​ Geração de Stubs: Stubs são frequentemente gerados automaticamente a partir 

de uma descrição da interface do serviço (e.g., usando uma Linguagem de 
Definição de Interface - IDL). 

•​ Semântica de RPC: Lidar com falhas é um desafio. Diferentes semânticas podem 
ser oferecidas (e.g., at-least-once, at-most-once, exactly-once - esta última é difícil 
de garantir). 

•​ Exemplos: Sun RPC (agora ONC RPC), DCE RPC, gRPC (Google), Apache 
Thrift. 

Memória Compartilhada Distribuída (Distributed Shared Memory - 
DSM) 
DSM é uma abstração que tenta fornecer a ilusão de um espaço de memória 
compartilhado fisicamente entre os nós de um sistema multicomputador, mesmo que o 
hardware subjacente não tenha memória compartilhada. O objetivo é permitir que os 
programadores usem o paradigma de programação de memória compartilhada (mais 
familiar para muitos) em sistemas distribuídos. 

•​ Implementação: O sistema DSM gerencia a replicação e a migração de páginas 
(ou objetos) de dados entre os nós para manter a consistência. 

–​ Baseada em Páginas: O espaço de endereçamento compartilhado é 
dividido em páginas. Quando um processo acessa uma página que não está 
localmente, ocorre uma falta de página, e o sistema DSM busca a página do 
nó que a possui. 

–​ Baseada em Objetos/Variáveis: Apenas variáveis ou objetos específicos 
declarados como compartilhados são gerenciados pelo sistema DSM. 

•​ Coerência de DSM: Manter a consistência dos dados replicados é o principal 
desafio. Protocolos de coerência (semelhantes aos de coerência de cache em 



4 

multiprocessadores) são necessários para garantir que todos os nós vejam uma 
visão consistente da memória compartilhada. Isso pode envolver políticas de 
escrita (write-invalidate, write-update) e modelos de consistência (e.g., 
consistência sequencial, consistência relaxada). 

•​ Vantagens: Simplifica a programação para aqueles familiarizados com memória 
compartilhada. 

•​ Desvantagens: Pode ter alta latência de comunicação devido à necessidade de 
buscar dados pela rede. Manter a coerência pode ser complexo e caro em termos 
de sobrecarga de comunicação. O problema da falsa compartilhamento (false 
sharing) também pode ocorrer se dados não relacionados que residem na mesma 
página DSM forem acessados por diferentes nós. 

Escalonamento em Multicomputadores 
O escalonamento em sistemas multicomputadores envolve a alocação de processos ou 
tarefas aos diferentes nós do sistema. O objetivo é geralmente maximizar o 
paralelismo, minimizar o tempo de comunicação e balancear a carga entre os nós. 

•​ Alocação de Processos (Process Allocation / Task Mapping): Decidir em qual 
nó um novo processo ou tarefa deve ser executado. Considerações incluem: 

–​ Carga dos Nós: Tentar alocar para nós menos carregados. 
–​ Comunicação Interprocessos: Se processos se comunicam 

frequentemente, pode ser benéfico colocá-los no mesmo nó (se possível) ou 
em nós próximos na rede para reduzir a latência de comunicação. 

–​ Disponibilidade de Recursos: Alocar para nós que possuem os recursos 
específicos necessários pela tarefa (e.g., GPUs, grandes quantidades de 
memória, software específico). 

•​ Migração de Processos (Process Migration): Mover um processo em execução 
de um nó para outro. Pode ser usado para balanceamento de carga dinâmico ou 
para mover processos para mais perto dos dados que eles acessam. 

–​ Desafios: A migração pode ser complexa e cara, envolvendo a 
transferência do estado do processo (espaço de endereçamento, arquivos 
abertos, estado da CPU) pela rede. A migração de processos que estão 
ativamente se comunicando é particularmente difícil. 

•​ Balanceamento de Carga (Load Balancing): Distribuir a carga de trabalho 
uniformemente entre os nós para evitar que alguns nós fiquem sobrecarregados 
enquanto outros estão ociosos. Pode ser estático (baseado em informações 
conhecidas no momento da alocação) ou dinâmico (ajustando a alocação durante 
a execução, possivelmente usando migração). 

•​ Co-escalonamento (Co-scheduling / Gang Scheduling): Semelhante ao 
escalonamento gang em multiprocessadores, mas aplicado a processos em 
diferentes nós que fazem parte de uma aplicação paralela e se comunicam 
intensamente. Tenta garantir que todos os processos de um “gang” sejam 
executados simultaneamente em seus respectivos nós. 



5 

•​ Escalonamento em Grids e Clouds: Em ambientes de larga escala e 
heterogêneos como grids e nuvens, o escalonamento (muitas vezes chamado de 
agendamento de recursos ou brokering) envolve encontrar os recursos mais 
adequados (e possivelmente mais baratos ou que atendam a SLAs) para uma 
tarefa, considerando políticas, disponibilidade e custos. 

Conclusão 
Os sistemas para multicomputadores oferecem um caminho poderoso para alcançar 
alta performance, escalabilidade e disponibilidade, aproveitando o poder de múltiplos 
computadores interconectados. A comunicação baseada em passagem de mensagens 
é fundamental, com RPC e DSM fornecendo abstrações de mais alto nível. O design de 
aplicações e sistemas operacionais para esses ambientes deve considerar 
cuidadosamente a latência e a largura de banda da rede, a necessidade de 
sincronização distribuída e as estratégias de escalonamento e balanceamento de 
carga. Desafios como consistência de dados, tolerância a falhas (não abordado em 
detalhe aqui, mas crucial) e segurança são inerentes aos sistemas distribuídos. À 
medida que a computação em cluster, grid e nuvem continua a crescer, a importância 
de compreender os princípios dos sistemas para multicomputadores torna-se cada vez 
maior. 

Referências 
•​ Tanenbaum, A. S., & Van Steen, M. (2017). Distributed Systems: Principles and 

Paradigms (3rd ed.). Pearson Education. (Referência principal para sistemas 
distribuídos) 

•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts 
(10th ed.). Wiley. (Capítulos sobre sistemas distribuídos) 

•​ Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: 
Concepts and Design (5th ed.). Addison-Wesley. 

•​ MPI Forum. (Várias datas). MPI Standard Documents. Recuperado de 
https://www.mpi-forum.org/docs/ 

•​ Google. (Várias datas). gRPC Documentation. Recuperado de https://grpc.io/docs/ 
 
Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento 
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e 
fontes originais. 

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores 
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações 
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento. 

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de 
qualquer responsabilidade relacionada ao conteúdo aqui apresentado. 

https://www.mpi-forum.org/docs/
https://grpc.io/docs/

	Sistemas para Multicomputadores 
	Introdução 
	Hardware de Multicomputadores 
	Comunicação em Multicomputadores 
	Passagem de Mensagens (Message Passing) 
	Chamadas Remotas de Procedimentos (Remote Procedure Calls - RPC) 
	Memória Compartilhada Distribuída (Distributed Shared Memory - DSM) 

	Escalonamento em Multicomputadores 
	Conclusão 
	Referências 

