
1 

Nota: Este material complementar, disponível em https://prettore.github.io/lectures.html representa uma cópia resumida de 
conteúdos bibliográficos disponíveis gratuitamente na Internet. 

Virtualização em Sistemas Operacionais 

Introdução​ 1 

Tipos de Virtualização​ 1 

Hipervisores​ 2 

Máquinas Virtuais em CPUs Multicore​ 3 

Containers vs. Máquinas Virtuais​ 3 

Migração de Máquinas Virtuais​ 4 

Conclusão​ 5 

Referências​ 5 

 

Introdução 

A virtualização tornou-se uma tecnologia fundamental na computação moderna, 
transformando a maneira como os recursos de hardware são gerenciados e utilizados. 
Essencialmente, a virtualização introduz uma camada de abstração entre o hardware físico 
e os sistemas operacionais ou aplicações que rodam sobre ele, permitindo que múltiplos 
ambientes isolados coexistam em uma única máquina física (Tanenbaum & Bos, 2015; 
Silberschatz, Galvin, & Gagne, 2018). Essa capacidade de criar máquinas virtuais (VMs) ou 
containers oferece inúmeros benefícios, como a consolidação de servidores, a otimização 
do uso de recursos, maior flexibilidade administrativa, isolamento de ambientes para 
segurança e desenvolvimento, e a facilidade de provisionamento e migração de sistemas 
(Silva, Sousa, & Silva, 2017). O sistema operacional hospedeiro, ou um software 
especializado chamado hipervisor, gerencia essa camada de abstração, alocando recursos 
de CPU, memória, armazenamento e rede para cada ambiente virtualizado. Este resumo 
explora os conceitos centrais da virtualização, incluindo seus diferentes tipos, o papel dos 
hipervisores, a execução em hardware moderno, a comparação com containers e as técnicas 
de migração. 

Tipos de Virtualização 

A virtualização pode ser implementada de diferentes maneiras, cada uma com suas 
características e casos de uso específicos. As abordagens mais comuns são a virtualização 
total (ou completa) e a paravirtualização. 

Na virtualização total, o hipervisor emula completamente o hardware subjacente para 
cada máquina virtual. Isso significa que o sistema operacional convidado (guest OS) não 
precisa de nenhuma modificação para rodar, pois ele acredita estar interagindo 

https://prettore.github.io/lectures.html


2 

diretamente com o hardware real. O hipervisor intercepta e traduz as instruções 
privilegiadas do guest OS, o que pode introduzir alguma sobrecarga de desempenho. 
Exemplos de tecnologias que utilizam virtualização total incluem VMware 
Workstation/ESXi e VirtualBox em suas configurações padrão (Tanenbaum & Bos, 2015). A 
principal vantagem é a compatibilidade, permitindo rodar praticamente qualquer sistema 
operacional sem alterações. 

A paravirtualização, por outro lado, requer que o sistema operacional convidado seja 
modificado (ou ‘paravirtualizado’) para estar ciente de que está rodando em um ambiente 
virtualizado. Em vez de emular o hardware, o hipervisor expõe uma API específica que o 
guest OS utiliza para realizar operações privilegiadas. Essa comunicação direta entre o 
guest e o hipervisor elimina a necessidade de interceptar e traduzir instruções, resultando, 
geralmente, em melhor desempenho em comparação com a virtualização total. O Xen é um 
exemplo clássico de hipervisor que popularizou a paravirtualização, embora hipervisores 
modernos frequentemente combinem técnicas de virtualização total e paravirtualização 
(assistida por hardware) para otimizar desempenho e compatibilidade (Silberschatz, 
Galvin, & Gagne, 2018). 

Existem também outras classificações, como a virtualização assistida por hardware, onde 
extensões específicas da CPU (como Intel VT-x e AMD-V) auxiliam o hipervisor na execução 
de instruções privilegiadas, melhorando significativamente o desempenho da virtualização 
total. A virtualização no nível do sistema operacional, exemplificada pelos containers, 
representa outra abordagem distinta, que será discutida posteriormente. 

Hipervisores 

O componente central que torna a virtualização possível é o hipervisor, também conhecido 
como Monitor de Máquina Virtual (VMM - Virtual Machine Monitor). O hipervisor é uma 
camada de software (ou firmware, ou mesmo hardware) que cria, executa e gerencia as 
máquinas virtuais ou containers. Ele é responsável por abstrair o hardware físico e alocar 
os recursos (CPU, memória, E/S) para cada ambiente virtualizado, garantindo o isolamento 
entre eles (Silberschatz, Galvin, & Gagne, 2018). Existem duas categorias principais de 
hipervisores: 

Hipervisores Tipo 1 (Bare-metal): Estes hipervisores rodam diretamente sobre o 
hardware físico do servidor, sem a necessidade de um sistema operacional hospedeiro 
subjacente. Eles funcionam, essencialmente, como um sistema operacional minimalista 
otimizado para gerenciar VMs. Por terem acesso direto ao hardware, os hipervisores Tipo 1 
geralmente oferecem melhor desempenho, escalabilidade e robustez, sendo a escolha 
predominante em ambientes de data center e computação em nuvem. Exemplos notáveis 
incluem VMware ESXi, Microsoft Hyper-V Server, Xen e KVM (Kernel-based Virtual 
Machine), que, embora integrado ao kernel Linux, opera de forma muito similar a um 
hipervisor bare-metal (Tanenbaum & Bos, 2015). 

Hipervisores Tipo 2 (Hosted): Estes hipervisores rodam como uma aplicação sobre um 
sistema operacional convencional (hospedeiro), como Windows, macOS ou Linux. O sistema 



3 

operacional hospedeiro gerencia o hardware, e o hipervisor interage com o SO para obter 
acesso aos recursos necessários para as VMs. Hipervisores Tipo 2 são mais fáceis de 
instalar e gerenciar, sendo ideais para usuários finais, desenvolvedores e ambientes de teste 
que precisam rodar diferentes sistemas operacionais em uma única estação de trabalho. No 
entanto, a camada adicional do SO hospedeiro pode introduzir latência e sobrecarga de 
desempenho. Exemplos comuns incluem VMware Workstation, Oracle VirtualBox e 
Parallels Desktop (Tanenbaum & Bos, 2015; Silva, Sousa, & Silva, 2017). 

A escolha entre Tipo 1 e Tipo 2 depende dos requisitos específicos de desempenho, 
escalabilidade, segurança e gerenciamento do ambiente de virtualização. 

Máquinas Virtuais em CPUs Multicore 

A proliferação de processadores multicore impactou significativamente a forma como a 
virtualização é implementada e gerenciada. Os hipervisores modernos são projetados para 
tirar proveito dessas arquiteturas, distribuindo as máquinas virtuais e seus processos entre 
os múltiplos núcleos disponíveis. Isso permite que várias VMs executem em paralelo de 
forma mais eficiente, melhorando o desempenho geral do sistema (Silberschatz, Galvin, & 
Gagne, 2018). O hipervisor é responsável pelo escalonamento das CPUs virtuais (vCPUs) 
das VMs nos núcleos físicos (pCPUs). Estratégias de escalonamento sofisticadas são 
empregadas para garantir a justiça na alocação de tempo de CPU, minimizar a contenção 
por recursos e otimizar a localidade de cache, por exemplo, tentando manter uma vCPU 
rodando no mesmo pCPU ou em núcleos dentro do mesmo soquete físico sempre que 
possível. Além disso, tecnologias como NUMA (Non-Uniform Memory Access), comuns em 
servidores multicore, exigem que o hipervisor gerencie a alocação de memória de forma 
inteligente, garantindo que as VMs acessem preferencialmente a memória local ao seu nó 
NUMA para evitar latências elevadas (Tanenbaum & Bos, 2015). A capacidade de alocar 
múltiplas vCPUs para uma única VM também permite que aplicações multithreaded dentro 
da VM se beneficiem diretamente da arquitetura multicore do hospedeiro. 

Containers vs. Máquinas Virtuais 

Embora tanto containers quanto máquinas virtuais ofereçam formas de isolamento e 
execução de aplicações em ambientes separados, eles operam em níveis de abstração 
diferentes e possuem características distintas. A escolha entre eles depende das 
necessidades específicas de isolamento, desempenho, densidade e gerenciamento. 

As Máquinas Virtuais (VMs), como discutido, utilizam um hipervisor para emular um 
conjunto completo de hardware (CPU, memória, disco, rede) para cada instância. Cada VM 
executa seu próprio sistema operacional convidado (guest OS) completo, isolado do sistema 
operacional hospedeiro e das outras VMs. Esse isolamento no nível do hardware e do kernel 
oferece um alto grau de segurança e compatibilidade, permitindo executar sistemas 
operacionais diferentes (e versões diferentes do mesmo SO) na mesma máquina física. No 
entanto, cada VM consome uma quantidade significativa de recursos (disco para o SO guest, 
memória RAM, sobrecarga do hipervisor), o que limita a densidade (número de instâncias 



4 

por host) e pode impactar o desempenho (Tanenbaum & Bos, 2015; Silberschatz, Galvin, & 
Gagne, 2018). 

Os Containers, por outro lado, operam em um nível de abstração mais alto, virtualizando o 
próprio sistema operacional. Em vez de emular hardware, os containers compartilham o 
kernel do sistema operacional hospedeiro. Cada container executa como um processo 
isolado no espaço de usuário do host, com sua própria visão do sistema de arquivos, rede e 
identificadores de processo. Tecnologias como Docker e LXC utilizam recursos do kernel 
Linux (como namespaces e cgroups) para prover esse isolamento. Como não há um SO 
guest completo para cada container, eles são extremamente leves e rápidos para iniciar. Isso 
permite uma densidade muito maior de containers por host em comparação com VMs e 
oferece desempenho próximo ao nativo, pois não há a sobrecarga da emulação de hardware 
ou da tradução de instruções pelo hipervisor. A desvantagem principal é o menor nível de 
isolamento em comparação com as VMs; uma vulnerabilidade no kernel do host pode, 
teoricamente, afetar todos os containers. Além disso, todos os containers em um host 
devem ser compatíveis com o kernel do sistema operacional hospedeiro (e.g., containers 
Linux só rodam em hosts Linux) (Tanenbaum & Bos, 2015; Silva, Sousa, & Silva, 2017). 

Em resumo, VMs são ideais quando é necessário um isolamento forte, a execução de 
sistemas operacionais diferentes ou legados, ou quando se precisa de controle total sobre o 
ambiente do SO. Containers são preferíveis para empacotar e distribuir aplicações 
(especialmente microsserviços), para ambientes de desenvolvimento e teste rápidos, e 
quando alta densidade e desempenho próximo ao nativo são cruciais. 

Migração de Máquinas Virtuais 

A capacidade de migrar máquinas virtuais entre hosts físicos é uma das vantagens mais 
significativas da virtualização, especialmente em ambientes de data center e nuvem. A 
migração permite realizar manutenção em hardware sem interromper os serviços, 
balancear a carga entre servidores, otimizar o consumo de energia e aumentar a resiliência 
a falhas. A forma mais avançada é a migração ao vivo (Live Migration) (Silberschatz, 
Galvin, & Gagne, 2018). 

Na migração ao vivo, uma máquina virtual em execução é movida de um host físico para 
outro com interrupção mínima ou imperceptível para o usuário final e as aplicações 
rodando dentro da VM. O processo geralmente envolve várias etapas: primeiro, o estado da 
memória da VM é copiado do host de origem para o host de destino através da rede. Como a 
VM continua rodando durante essa cópia inicial, páginas de memória que são modificadas 
(páginas sujas ou ‘dirty pages’) precisam ser rastreadas e copiadas novamente em iterações 
subsequentes. Quando a taxa de modificação de páginas se torna baixa o suficiente, a 
execução da VM é brevemente pausada no host de origem, as últimas páginas sujas e o 
estado final da CPU são transferidos para o destino, e a execução da VM é retomada no novo 
host. O armazenamento da VM, geralmente localizado em uma rede de armazenamento 
compartilhada (SAN ou NAS), não precisa ser movido, apenas o acesso a ele é transferido 
para o novo host. Tecnologias como VMware vMotion e KVM Live Migration implementam 
esse processo (Tanenbaum & Bos, 2015). A migração ao vivo é crucial para a alta 



5 

disponibilidade e a flexibilidade operacional exigidas pelos ambientes de computação em 
nuvem modernos. 

Conclusão 

A virtualização representa uma mudança paradigmática na forma como os recursos 
computacionais são gerenciados e consumidos. Ao desacoplar o software do hardware 
subjacente através de hipervisores ou mecanismos de containerização, ela oferece 
flexibilidade, eficiência e escalabilidade sem precedentes. Desde a consolidação de 
servidores em data centers até o provisionamento rápido de ambientes de desenvolvimento 
e a arquitetura de microsserviços na nuvem, a virtualização tornou-se onipresente. A 
compreensão dos diferentes tipos de virtualização (total, paravirtualização), o papel dos 
hipervisores (Tipo 1 e Tipo 2), as nuances da execução em hardware multicore, as 
diferenças fundamentais entre VMs e containers, e as capacidades de migração ao vivo são 
essenciais para profissionais de TI e desenvolvedores. Embora traga inúmeros benefícios, a 
virtualização também introduz novas complexidades em termos de gerenciamento, 
segurança e otimização de desempenho, exigindo conhecimento especializado para sua 
implementação e manutenção eficazes. À medida que a tecnologia continua a evoluir, a 
virtualização permanecerá como um pilar fundamental da infraestrutura de TI moderna 
(Silberschatz, Galvin, & Gagne, 2018; Tanenbaum & Bos, 2015). 

Referências 
•​ Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th ed.). 

Wiley. 
•​ Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson 

Education. 
•​ Silva, G. S., Sousa, J. F., & Silva, E. R. C. (2017). Virtualização de Sistemas Operacionais: 

Análise Comparativa entre os Ambientes Físico e Virtual. Anais do Simpósio de 
Produção Científica, UEMA. (Nota: Referência adaptada do artigo encontrado em 
Unibalsas, verificar dados completos se necessário para publicação formal). 

​
Isenção de Responsabilidade:​
Os autores deste documento não reivindicam a autoria do conteúdo original compilado das fontes mencionadas. Este documento 
foi elaborado para fins educativos e de referência, e todos os créditos foram devidamente atribuídos aos respectivos autores e 
fontes originais. 

Qualquer utilização comercial ou distribuição do conteúdo aqui compilado deve ser feita com a devida autorização dos detentores 
dos direitos autorais originais. Os compiladores deste documento não assumem qualquer responsabilidade por eventuais violações 
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informações contidas neste documento. 

Ao utilizar este documento, o usuário concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de 
qualquer responsabilidade relacionada ao conteúdo aqui apresentado. 


	Virtualização em Sistemas Operacionais 
	Introdução 
	Tipos de Virtualização 
	Hipervisores 
	Máquinas Virtuais em CPUs Multicore 
	Containers vs. Máquinas Virtuais 
	Migração de Máquinas Virtuais 
	Conclusão 
	Referências 

