https://prettore.qithub.io/lectures.html

Virtualizacao em Sistemas Operacionais

Introducao

Tipos de Virtualizacao

Hipervisores

Maquinas Virtuais em CPUs Multicore
Containers vs. Maquinas Virtuais
Migracao de Maquinas Virtuais
Conclusao

V1 U1 W W W N R R

Referéncias

Introducao

A virtualizacdo tornou-se uma tecnologia fundamental na computacdo moderna,
transformando a maneira como os recursos de hardware sdo gerenciados e utilizados.
Essencialmente, a virtualizacao introduz uma camada de abstracdo entre o hardware fisico
e os sistemas operacionais ou aplicacdes que rodam sobre ele, permitindo que multiplos
ambientes isolados coexistam em uma Unica maquina fisica (Tanenbaum & Bos, 2015;
Silberschatz, Galvin, & Gagne, 2018). Essa capacidade de criar maquinas virtuais (VMs) ou
containers oferece inimeros beneficios, como a consolidagdo de servidores, a otimizacao
do uso de recursos, maior flexibilidade administrativa, isolamento de ambientes para
seguranca e desenvolvimento, e a facilidade de provisionamento e migracao de sistemas
(Silva, Sousa, & Silva, 2017). O sistema operacional hospedeiro, ou um software
especializado chamado hipervisor, gerencia essa camada de abstracado, alocando recursos
de CPU, memoria, armazenamento e rede para cada ambiente virtualizado. Este resumo
explora os conceitos centrais da virtualizacdo, incluindo seus diferentes tipos, o papel dos
hipervisores, a execu¢do em hardware moderno, a comparagdo com containers e as técnicas
de migracao.

Tipos de Virtualizacao

A virtualizacdo pode ser implementada de diferentes maneiras, cada uma com suas
caracteristicas e casos de uso especificos. As abordagens mais comuns sao a virtualizacao
total (ou completa) e a paravirtualizacao.

Na virtualizacao total, o hipervisor emula completamente o hardware subjacente para
cada maquina virtual. Isso significa que o sistema operacional convidado (guest OS) nao
precisa de nenhuma modificagdio para rodar, pois ele acredita estar interagindo


https://prettore.github.io/lectures.html

diretamente com o hardware real. O hipervisor intercepta e traduz as instrugdes
privilegiadas do guest OS, o que pode introduzir alguma sobrecarga de desempenho.
Exemplos de tecnologias que utilizam virtualizacdo total incluem VMware
Workstation/ESXi e VirtualBox em suas configura¢des padrao (Tanenbaum & Bos, 2015). A
principal vantagem é a compatibilidade, permitindo rodar praticamente qualquer sistema
operacional sem alteragoes.

A paravirtualizagdao, por outro lado, requer que o sistema operacional convidado seja
modificado (ou ‘paravirtualizado’) para estar ciente de que estd rodando em um ambiente
virtualizado. Em vez de emular o hardware, o hipervisor expde uma API especifica que o
guest OS utiliza para realizar operagdes privilegiadas. Essa comunicacao direta entre o
guest e o hipervisor elimina a necessidade de interceptar e traduzir instrugdes, resultando,
geralmente, em melhor desempenho em comparacao com a virtualizacdo total. O Xen é um
exemplo classico de hipervisor que popularizou a paravirtualizacdo, embora hipervisores
modernos frequentemente combinem técnicas de virtualizacdo total e paravirtualizacdo
(assistida por hardware) para otimizar desempenho e compatibilidade (Silberschatz,
Galvin, & Gagne, 2018).

Existem também outras classificacdes, como a virtualizagdo assistida por hardware, onde
extensodes especificas da CPU (como Intel VT-x e AMD-V) auxiliam o hipervisor na execucao
de instrugoes privilegiadas, melhorando significativamente o desempenho da virtualizacao
total. A virtualizacdo no nivel do sistema operacional, exemplificada pelos containers,
representa outra abordagem distinta, que sera discutida posteriormente.

Hipervisores

O componente central que torna a virtualizagdo possivel é o hipervisor, também conhecido
como Monitor de Maquina Virtual (VMM - Virtual Machine Monitor). O hipervisor é uma
camada de software (ou firmware, ou mesmo hardware) que cria, executa e gerencia as
maquinas virtuais ou containers. Ele é responsavel por abstrair o hardware fisico e alocar
os recursos (CPU, memoria, E/S) para cada ambiente virtualizado, garantindo o isolamento
entre eles (Silberschatz, Galvin, & Gagne, 2018). Existem duas categorias principais de
hipervisores:

Hipervisores Tipo 1 (Bare-metal): Estes hipervisores rodam diretamente sobre o
hardware fisico do servidor, sem a necessidade de um sistema operacional hospedeiro
subjacente. Eles funcionam, essencialmente, como um sistema operacional minimalista
otimizado para gerenciar VMs. Por terem acesso direto ao hardware, os hipervisores Tipo 1
geralmente oferecem melhor desempenho, escalabilidade e robustez, sendo a escolha
predominante em ambientes de data center e computacdo em nuvem. Exemplos notaveis
incluem VMware ESXi, Microsoft Hyper-V Server, Xen e KVM (Kernel-based Virtual
Machine), que, embora integrado ao kernel Linux, opera de forma muito similar a um
hipervisor bare-metal (Tanenbaum & Bos, 2015).

Hipervisores Tipo 2 (Hosted): Estes hipervisores rodam como uma aplicagao sobre um
sistema operacional convencional (hospedeiro), como Windows, macOS ou Linux. O sistema



operacional hospedeiro gerencia o hardware, e o hipervisor interage com o SO para obter
acesso aos recursos necessarios para as VMs. Hipervisores Tipo 2 sdo mais faceis de
instalar e gerenciar, sendo ideais para usudrios finais, desenvolvedores e ambientes de teste
que precisam rodar diferentes sistemas operacionais em uma Unica estagao de trabalho. No
entanto, a camada adicional do SO hospedeiro pode introduzir laténcia e sobrecarga de
desempenho. Exemplos comuns incluem VMware Workstation, Oracle VirtualBox e
Parallels Desktop (Tanenbaum & Bos, 2015; Silva, Sousa, & Silva, 2017).

A escolha entre Tipo 1 e Tipo 2 depende dos requisitos especificos de desempenho,
escalabilidade, seguranca e gerenciamento do ambiente de virtualizacgao.

Maquinas Virtuais em CPUs Multicore

A proliferacdo de processadores multicore impactou significativamente a forma como a
virtualizacao é implementada e gerenciada. Os hipervisores modernos sdo projetados para
tirar proveito dessas arquiteturas, distribuindo as maquinas virtuais e seus processos entre
os multiplos nucleos disponiveis. Isso permite que varias VMs executem em paralelo de
forma mais eficiente, melhorando o desempenho geral do sistema (Silberschatz, Galvin, &
Gagne, 2018). O hipervisor é responsavel pelo escalonamento das CPUs virtuais (vCPUs)
das VMs nos nucleos fisicos (pCPUs). Estratégias de escalonamento sofisticadas sdo
empregadas para garantir a justica na alocacdo de tempo de CPU, minimizar a contencao
por recursos e otimizar a localidade de cache, por exemplo, tentando manter uma vCPU
rodando no mesmo pCPU ou em nucleos dentro do mesmo soquete fisico sempre que
possivel. Além disso, tecnologias como NUMA (Non-Uniform Memory Access), comuns em
servidores multicore, exigem que o hipervisor gerencie a alocagdo de memdria de forma
inteligente, garantindo que as VMs acessem preferencialmente a memoria local ao seu né
NUMA para evitar laténcias elevadas (Tanenbaum & Bos, 2015). A capacidade de alocar
multiplas vCPUs para uma tnica VM também permite que aplicagdes multithreaded dentro
da VM se beneficiem diretamente da arquitetura multicore do hospedeiro.

Containers vs. Maquinas Virtuais

Embora tanto containers quanto maquinas virtuais oferecam formas de isolamento e
execucao de aplicagbes em ambientes separados, eles operam em niveis de abstracdo
diferentes e possuem caracteristicas distintas. A escolha entre eles depende das
necessidades especificas de isolamento, desempenho, densidade e gerenciamento.

As Maquinas Virtuais (VMs), como discutido, utilizam um hipervisor para emular um
conjunto completo de hardware (CPU, memodria, disco, rede) para cada instancia. Cada VM
executa seu proprio sistema operacional convidado (guest OS) completo, isolado do sistema
operacional hospedeiro e das outras VMs. Esse isolamento no nivel do hardware e do kernel
oferece um alto grau de seguranca e compatibilidade, permitindo executar sistemas
operacionais diferentes (e versdes diferentes do mesmo SO) na mesma maquina fisica. No
entanto, cada VM consome uma quantidade significativa de recursos (disco para o SO guest,
memoria RAM, sobrecarga do hipervisor), o que limita a densidade (nimero de instancias



por host) e pode impactar o desempenho (Tanenbaum & Bos, 2015; Silberschatz, Galvin, &
Gagne, 2018).

Os Containers, por outro lado, operam em um nivel de abstracdo mais alto, virtualizando o
proprio sistema operacional. Em vez de emular hardware, os containers compartilham o
kernel do sistema operacional hospedeiro. Cada container executa como um processo
isolado no espaco de usuario do host, com sua prépria visao do sistema de arquivos, rede e
identificadores de processo. Tecnologias como Docker e LXC utilizam recursos do kernel
Linux (como namespaces e cgroups) para prover esse isolamento. Como ndo ha um SO
guest completo para cada container, eles sao extremamente leves e rapidos para iniciar. Isso
permite uma densidade muito maior de containers por host em comparag¢ao com VMs e
oferece desempenho préximo ao nativo, pois ndo ha a sobrecarga da emulacdo de hardware
ou da tradugdo de instrucdes pelo hipervisor. A desvantagem principal é o menor nivel de
isolamento em compara¢do com as VMs; uma vulnerabilidade no kernel do host pode,
teoricamente, afetar todos os containers. Além disso, todos os containers em um host
devem ser compativeis com o kernel do sistema operacional hospedeiro (e.g., containers
Linux s6 rodam em hosts Linux) (Tanenbaum & Bos, 2015; Silva, Sousa, & Silva, 2017).

Em resumo, VMs sdo ideais quando é necessdrio um isolamento forte, a execucdo de
sistemas operacionais diferentes ou legados, ou quando se precisa de controle total sobre o
ambiente do SO. Containers sdo preferiveis para empacotar e distribuir aplica¢des
(especialmente microsservicos), para ambientes de desenvolvimento e teste rapidos, e
quando alta densidade e desempenho proximo ao nativo sdo cruciais.

Migragcao de Maquinas Virtuais

A capacidade de migrar maquinas virtuais entre hosts fisicos € uma das vantagens mais
significativas da virtualizacdo, especialmente em ambientes de data center e nuvem. A
migracao permite realizar manutencdao em hardware sem interromper o0s servicos,
balancear a carga entre servidores, otimizar o consumo de energia e aumentar a resiliéncia
a falhas. A forma mais avancada é a migracdao ao vivo (Live Migration) (Silberschatz,
Galvin, & Gagne, 2018).

Na migragdo ao vivo, uma maquina virtual em execu¢do é movida de um host fisico para
outro com interrupcdo minima ou imperceptivel para o usuario final e as aplicagdes
rodando dentro da VM. O processo geralmente envolve varias etapas: primeiro, o estado da
memoria da VM é copiado do host de origem para o host de destino através da rede. Como a
VM continua rodando durante essa copia inicial, paginas de memoria que sdo modificadas
(paginas sujas ou ‘dirty pages’) precisam ser rastreadas e copiadas novamente em iteragdes
subsequentes. Quando a taxa de modificacdo de paginas se torna baixa o suficiente, a
execucao da VM é brevemente pausada no host de origem, as ultimas paginas sujas e o
estado final da CPU sao transferidos para o destino, e a execu¢cdo da VM é retomada no novo
host. O armazenamento da VM, geralmente localizado em uma rede de armazenamento
compartilhada (SAN ou NAS), ndo precisa ser movido, apenas o acesso a ele é transferido
para o novo host. Tecnologias como VMware vMotion e KVM Live Migration implementam
esse processo (Tanenbaum & Bos, 2015). A migra¢do ao vivo é crucial para a alta



disponibilidade e a flexibilidade operacional exigidas pelos ambientes de computagcao em
nuvem modernos.

Conclusao

A virtualizagdo representa uma mudang¢a paradigmatica na forma como o0s recursos
computacionais sdo gerenciados e consumidos. Ao desacoplar o software do hardware
subjacente através de hipervisores ou mecanismos de containerizacdo, ela oferece
flexibilidade, eficiéncia e escalabilidade sem precedentes. Desde a consolidagcdo de
servidores em data centers até o provisionamento rapido de ambientes de desenvolvimento
e a arquitetura de microsservicos na nuvem, a virtualizacdo tornou-se onipresente. A
compreensdo dos diferentes tipos de virtualizacdo (total, paravirtualizacdo), o papel dos
hipervisores (Tipo 1 e Tipo 2), as nuances da execucdo em hardware multicore, as
diferencas fundamentais entre VMs e containers, e as capacidades de migra¢do ao vivo sao
essenciais para profissionais de TI e desenvolvedores. Embora traga inumeros beneficios, a
virtualizacdo também introduz novas complexidades em termos de gerenciamento,
seguranca e otimizacdo de desempenho, exigindo conhecimento especializado para sua
implementacdo e manutencio eficazes. A medida que a tecnologia continua a evoluir, a
virtualizacdo permanecera como um pilar fundamental da infraestrutura de TI moderna
(Silberschatz, Galvin, & Gagne, 2018; Tanenbaum & Bos, 2015).

Referéncias

o Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th ed.).
Wiley.

e Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson
Education.

e Silva, G. S, Sousa, J. F, & Silva, E. R. C. (2017). Virtualizacdo de Sistemas Operacionais:
Andlise Comparativa entre os Ambientes Fisico e Virtual. Anais do Simpdsio de
Produgdo Cientifica, UEMA. (Nota: Referéncia adaptada do artigo encontrado em
Unibalsas, verificar dados completos se necessario para publicacao formal).

Isengio de Responsabilidade:

Os autores deste documento nao reivindicam a autoria do contetido original compilado das fontes mencionadas. Este documento
foi elaborado para fins educativos e de referéncia, e todos os créditos foram devidamente atribuidos aos respectivos autores e
fontes originais.

Qualquer utilizagdo comercial ou distribuicdo do conteudo aqui compilado deve ser feita com a devida autorizagao dos detentores
dos direitos autorais originais. Os compiladores deste documento ndo assumem qualquer responsabilidade por eventuais violagdes
de direitos autorais ou por quaisquer danos decorrentes do uso indevido das informagdes contidas neste documento.

Ao utilizar este documento, o usuario concorda em respeitar os direitos autorais dos autores originais e isenta os compiladores de
qualquer responsabilidade relacionada ao conteudo aqui apresentado.



	Virtualização em Sistemas Operacionais 
	Introdução 
	Tipos de Virtualização 
	Hipervisores 
	Máquinas Virtuais em CPUs Multicore 
	Containers vs. Máquinas Virtuais 
	Migração de Máquinas Virtuais 
	Conclusão 
	Referências 

