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1. Introduction



CS212 - Operating Systems

. N @ Administrivia
Instructor: David Mazieres

CAs: Sam Do, Poojan Pandya, and Hari Vallabhaneni

Stanford University @ Substance

1/36 2/36

CS212 vs. CS112 Lecture attendance

® CS212 (previously CS140) is a standalone OS class

- Lectures introduce OS topics, similar to CS111 ¢ In-person lecture attendance expected for CS212 students
- Exams test you on material from lecture - Use phone or laptop logged into Stanford to check in,
- Programming projects make ideas concrete in an instructional 0S or jot down attendance code and check-in right after lecture

.. . - Please check-in over Stanford WiFi, not mobile network if possible
° CS112i he pr: from CS212 ’
e sjustthep ?jects’ ° FS - Exception: SCPD students (welcome to attend but not required),
- Only makes sense if you’ve previously taken CS111 or Instructor gave you permission to be treated as an SCPD student
- Idea: projects in separate quarter from lectures allows more time

) . i e Don’t just watch the videos if you are a non-SCPD student
- Feel free to attend any lectures if you want to review a topic (but

most will be similar to CS111) - Grade is partly based on attendance
- Afew recommended lectures/sections marked in syllabus - Saving videos until night before exam proven bad idea
« In case there are still bugs in program sheets e Lectures will be available by zoom and recorded
- €S111 or C5212 should fulfill any OS breadth requirement - When practical, SCPD encouraged to join synchronously via zoom
- CS112 or CS212 should satisfy significant implementation - Otherwise, videos will be on panopto

- Ask for exception if something doesn’t make sense

3/36 4/36

Administrivia Administrivia 2
e Edstem is the main discussion forum
« Class web page: http://cs212.scs. stanford. edu/ e Staff mailing list: cs212-staff@scs.stanford.edu
e CAsplit office hours, first round-robin, then individual/group
- Please ask non-private questions in RR portion
- Priority for individual group will go to people who attended RR

- All assignments, handouts, lecture notes on-line

e Textbook: Operating System Concepts, 8th Edition,
by Silberschatz, Galvin, and Gagne

) . ) . * Key dates:
- Out of print and highly optional (weening class from textbook) - Lectures: MW 1:30pm-2:50pm
* Goal is to make lecture slides the primary reference - 6 sections starting this Friday (time, location TBD)
- Almost everything | talk about will be on slides Gt.h section (final review) i§ in Wednesday lecture slot
- PDF slides contain links to further reading about topics g Mldterm: Monday, May 5, in class (1:30pm-2:50pm)
- Please download slides from class web page - Final: Monday, June 9, 3:30pm-6:30pm
- Will try to post before lecture for taking notes - No alternate exam arrangements (except OAE, SCPD),
(but avoid calling out answers if you read them from slides) In-person attendance required for both midterm and final

- SCPD can use exam monitor, return within 24 hours of exam start

* Exams open note, but not open book (bring slide print-outs)
5/36 6/36



* Threads & Processes ¢ Introduce you to operating system concepts

* Concurrency & Synchronization - Hard to use a computer without interacting with 0S

* Scheduling - Understanding the OS makes you a more effective programmer

e Cover important systems concepts in general
- Caching, concurrency, memory management, I/O, protection

Virtual Memory
* 1/0

« Disks, File systems * Teach you to deal with larger software systems

- Programming assignments much larger than many courses
- Warning: Many people will consider course very hard
Virtual machines - In past, majority of people report >15 hours/week

- We hope it’'s more manageable with CS111 background and no
lectures or exams

* Protection & Security

Note: Lectures will often take Unix as an example

- Most current and future OSes heavily influenced by Unix

_ Won't talk much about Windows * Prepare you to take graduate OS classes (CS240, 240[a-z])

7/36 8/36
Programming Assignments Grading
* Implement parts of Pintos operating system e No incompletes (talk to me ASAP if you have problems)
- Built for x86 hardware, you will use hardware emulators * 50% of CS212 grade based on exams using this quantity:
 One setup homework (lab 0) due this Friday resurrection < (midterm > 0 && missed < 7 lectures)

// final review section doesn’t count as lecture

* Four two-week implementation projects:
) max (% (midterm + final), resurrection ? final : O)

- Threads

- User processes * 50% of CS212 grade, 100% of CS112 grade from projects

- Virtual memory - For each project, 50% of score based on passing test cases

- File system - Remaining 50% based on design and style
* Lab 1 on web site, officially distributed Wednesday * Most people’s projects pass most test cases

- Attend section this Friday for project 1 overview - Please, please, please turn in working code, or no credit here
* Implement projects in groups of up to 3 people * Means design and style matter a lot

- CS112/CS212 mixed groups allowed - Large software systems not just about producing working code

- Disclose to partners if you are taking class pass/fail - Need to produce code other people can understand

- Use “Forming Teams” category on edstem to meet people - That’s why we have group projects

9/36 10/36

Style Assignment requirements

* Do not look at other people’s solutions to projects
- We reserve the right to run MOSS on present and past submissions
- Do not publish your own solutions in violation of the honor code

* Must turn in a design document along with code
- We supply you with templates for each project’s design doc

¢ CAs will manually inspect code for correctness - That means using (public) github can get you in big trouble
- E.g., must actually implement the design * You may read but not copy other OSes
- Must handle corner cases (e.g., handle malloc failure) - E.g., Linux, OpenBSD/FreeBSD, etc.
* Will deduct points for error-prone code w/o errors e Cite any code that inspired your code
- Don’t use global variables if automatic ones suffice - As long as you cite what you used, it’s not cheating
- Don’t use deceptive names for variables - Inworst case, we deduct points if it undermines the assignment

+ Code must be easy to read o Prolj:ects (1ue 'at s:a;t of'?lass (1:\ d:le dtate - .
- Indent code, keep lines and (when possible) functions short i a:eir?éseﬁlzon o >pmityouattendiecture oritali group members

- Use auniform coding style (try to match existing code) o Ask cs212-staff for extension if you run into trouble

- Put comments on structure members, globals, functions . .
. - Besure to tell us: How much have you done? How much is left?
- Don’t leave in reams of commented-out garbage code When can you finish by?

11/36 12/36



¢ Layer between applications and hardware

@ Administrivia

¢ Makes hardware useful to the programmer

@ Substance e [Usually] Provides abstractions for applications

- Manages and hides details of hardware

- Accesses hardware through low/level interfaces unavailable to
applications

e [Often] Provides protection
- Prevents one process/user from clobbering another

13/36 14/36

Why study operating systems? Primitive Operating Systems

* Operating systems are a mature field e Just a library of standard services [no protection]
- Most people use a handful of mature OSes :
- Hard to get people to switch operating systems
- Hard to have impact with a new 0S

Still open questions in operating systems

- Security - Hard to achieve security without a solid foundation
- Scalability - How to adapt concepts when hardware scales 10x

- Standard interface above hardware-specific drivers, etc.

(fast networks, low service times, high core counts, big data...) e Simplifying assumptions
* High-performance servers are an OS issue - System runs one program at a time
- Face many of the same issues as OSes, sometimes bypass OS - No bad users or programs (often bad assumption)
* Resource consumption is an OS issue * Problem: Poor utilization
- Battery life, radio spectrum, etc. - ...of hardware (e.g., CPU idle while waiting for disk)

” . - ...of human user (must wait for each program to finish)
* New “smart” devices need new OSes

15/36 16/36

e Idea: More than one process can be running at once ¢ Idea: More than one process can be running at once
- When one process blocks (waiting for disk, network, user input, - When one process blocks (waiting for disk, network, user input,
etc.) run another process etc.) run another process
* Problem: What can ill-behaved process do? ¢ Problem: What can ill-behaved process do?

- Gointo infinite loop and never relinquish CPU
- Scribble over other processes’ memory to make them fail
e OS provides mechanisms to address these problems

- Preemption - take CPU away from looping process
- Memory protection - protect processes’ memory from one another

17/36 17/36



Multi-user OSes Multi-user OSes

0S
* Many OSes use protection to serve distrustful users/apps * Many OSes use protection to serve distrustful users/apps
e Idea: With N users, system not N times slower ¢ Idea: With N users, system not N times slower
- Users’ demands for CPU, memory, etc. are bursty - Users’ demands for CPU, memory, etc. are bursty
- Win by giving resources to users who actually need them - Win by giving resources to users who actually need them

* What can go wrong? * What can go wrong?
- Users are gluttons, use too much CPU, etc. (need policies)
- Total memory usage greater than machine’s RAM (must virtualize)

- Super-linear slowdown with increasing demand (thrashing)

18/36 18/36

oo lo1] 2] [55] [50
VM [IPC

* Mechanisms that isolate bad programs and people kernel

* Pre-emption: sockets file
TCP/IP  Scheduler  gystem

- Give application a resource, take it away if needed elsewhere | |
* Interposition/mediation: (ariver)  (driver)  (driver]

- Place OS between application and “stuff”

- Track all pieces that application allowed to use (e.g., in table)

- On every access, look in table to check that access legal

« Privileged & unprivileged modes in CPUs: ° Most software runs as user-level processes (P[1-4])
- Applications unprivileged (unprivileged user mode) - process ~ instance of a program
- OS privileged (privileged supervisor/kernel mode) * OS kernel runs in privileged mode (orange)
- Protection operations can only be done in privileged mode - Creates/deletes processes

- Provides access to hardware

19/36 20/36

System calls System calls (continued)
Goal: Do things application can’t do in unprivileged mode

open ()
user ( ) - Like a library call, but into more privileged kernel code

mode
‘———-{ system call interface ’——‘
kernel

mode ‘

Kernel supplies well-defined system call interface

- Applications set up syscall arguments and trap to kernel
- Kernel performs operation and returns result

open ()

Implementation
of open ()
system call

Higher-level functions built on syscall interface
- printf, scanf, fgets, etc.alluser-level code

* Example: POSIX/UNIX interface

- open, close, read, write, ...

return

* Applications can invoke kernel through system calls

- Special instruction transfers control to kernel
- ...which dispatches to one of few hundred syscall handlers

21/36 22/36



System call example UNIX file system calls

#include <stdio.h>
int main ()

{

: * Applications “open” files (or devices) by name
[ print (Greetngs"): - 1/0 happens through open files
rotum o; ® int open(char *path, int flags, /*int modex*/...);
- flags: 0_RDONLY, O_WRONLY, O_RDWR
ode I - O_CREAT: create the file if non-existent
homel L Standard G fibrary — - D_EXCL: (w. O_CREAT) create if file exists already
mode Qme o > - O_TRUNC: Truncate the file
- O_APPEND: Start writing from end of file
sy‘gtrietSn(c)all - mode: final argument with 0_CREAT

. - - * Returns file descriptor—used for all 1/0 to file
» Standard library implemented in terms of syscalls

- printf-in libc, has same privileges as application

- calls write - in kernel, which can send bits out serial port
23/36 24/36

What if open fails? Returns -1 (invalid fd)
* Most system calls return -1 on failure

® int read (int fd, void *buf, int nbytes);
- Returns number of bytes read

- Specific kind of error in global int errno - Returns 0 bytes at end of file, or -1 on error

- In retrospect, bad design decision for threads/modularity o int write (int £d, const void *buf, int nbytes);

® #include <sys/errno.h> for possible values - Returns number of bytes written, -1 on error
- 2 =ENOQENT “No such file or directory”

o o ® off_t lseek (int fd, off_t pos, int whence);
- 13 = EACCES “Permission Denied

. . - whence: 0 - start, 1 - current, 2 - end
¢ perror function prlnts human-readable message > Returns previous file offset, or -1 on error

- perror ("initfile"); °

PR . . » int close (int fd);
— “initfile: No such file or directory

25/36 26/36

void
typefile (char *filename)
{

* File descriptors are inherited by processes int fd. nread:

- When one process spawns another, same fds by default char buf[1024];
* Descriptors 0, 1, and 2 have special meaning £d = open (filename, O_RDONLY);
- 0-“standard input” (stdin in ANSI C) if (fd == —_1) {
- 1-“standard output” (stdout, printf in ANSIC) EZE‘; (filename);
- 2-“standard error” (stderr, perror in ANSIC) } ’

- Normally all three attached to terminal
while ((nread = read (fd, buf, sizeof (buf))) > 0)
* Example: type.c write (1, buf, nread);

- Prints the contents of a file to stdout
close (fd);

}

* Can see system calls using strace utility (ktrace on BSD)
27/36 28/36



Protection example: CPU preemption Protection is not security

* Protection mechanism to prevent monopolizing CPU * How can you monopolize CPU?

E.g., kernel programs timer to interrupt every 10 ms

- Must be in supervisor mode to write appropriate 1/0 registers
- User code cannot re-program interval timer

* Kernel sets interrupt to vector back to kernel
- Regains control whenever interval timer fires
- Gives CPU to another process if someone else needs it
- Note: must be in supervisor mode to set interrupt entry points
- No way for user code to hijack interrupt handler

Result: Cannot monopolize CPU with infinite loop
- At worst get 1/N of CPU with N CPU-hungry processes

29/36 30/36
Protection is not security Address translation
* How can you monopolize CPU? * Protect memory of one program from actions of another
¢ Use multiple processes * Definitions

- Address space: all memory locations a program can name
- Virtual address: addresses in process’ address space

- Physical address: address of real memory

- Translation: map virtual to physical addresses

* For many years, could wedge most OSes with
int main() { while(1) fork(); }
- Keeps creating more processes until system out of proc. slots

Other techniques: use all memory (chi11 program) ¢ Translation done on every load, store, and instruction fetch

Typically solved with technical/social combination - Modern CPUs do this in hardware for speed
- Technical solution: Limit processes per user
- Social: Reboot and yell at annoying users
- Social: Ban harmful apps from play store

¢ Idea: If you can’t name it, you can’t touch it

- Ensure one process’s translations don’t include any other process’s
memory

30/36 31/36

More memory protection Different system contexts

e At any point, a CPU (core) is in one of several contexts

* CPU allows kernel-only virtual addresses

- Kernel typically part of all address spaces, e User-level - CPU in user mode running application

e.g., to handle system call in same address space * Kernel process context - i.e., running kernel code on behalf of
- But must ensure apps can’t touch kernel memory a particular process
* CPU lets OS disable (invalidate) particular virtual addresses - E.g., performing system call, handling exception (memory fault,

numeric exception, etc.)

- Catch and halt buggy program that makes wild accesses - Or executing a kernel-only process (e.g., network file server)

- Make virtual memory seem bigger than physical
(e.g., bring a page in from disk only when accessed)

Kernel code not associated with a process
- Timer interrupt (hardclock)
- Device interrupt
- “Softirgs”, “Tasklets” (Linux-specific terms)
Context switch code - change which process is running
- Requires changing the current address space

* CPU enforced read-only virtual addresses useful

- E.g., allows sharing of code pages between processes
- Plus many other optimizations

* CPU enforced execute disable of VAs
- Makes certain code injection attacks harder

Idle - nothing to do (bzero pages, put CPU in low-power state)
32/36 33/36



Transitions between contexts Resource allocation & performance

Multitasking permits higher resource utilization

e Simple example:
User — kernel process context: syscall, page fault, ... - Process downloading large file mostly waits for network

User/process context — interrupt handler: hardware - You play a game while downloading the file
- Higher CPU utilization than if just downloading

Process context — user/context switch: return

. e Complexity arises with cost of switching
* Process context — context switch: sleep

Example: Say disk 1,000 times slower than memory
- 1GiB memory in machine
- 2 Processes want to run, each use 1 GiB
- Can switch processes by swapping them out to disk
- Faster to run one at a time than keep context switching

Context switch — user/process context

34/36 35/36

Useful properties to exploit

* Skew

- 80% of time taken by 20% of code
- 10% of memory absorbs 90% of references
- Basis behind cache: place 10% in fast memory, 90% in slow,
usually looks like one big fast memory
* Past predicts future (a.k.a. temporal locality)

- What’s the best cache entry to replace?
- If past ~ future, then least-recently-used entry

* Note conflict between fairness & throughput

- Higher throughput (fewer cache misses, etc.) to keep running
same process

- But fairness says should periodically preempt CPU and give it to
next process

36/36



type.c Fri Mar 28 10:27:18 2025 1

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
typefile (char *filename)
{

int fd, nread;

char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {

perror (filename);

return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

int
main (int argc, char **argv)
{
int argno;
for (argno = 1; argno < argc; argno++)
typefile (argv[argnol);
exit (0);



2. Processes & Threads



e Aprocess is an instance of a program running

Modern OSes run multiple processes simultaneously

Friday 1:30pm section in NVIDIA auditorium (same zoom link)
- Please attend first section this Friday to learn about project 1

Examples (can all run simultaneously):
Project 1 due Wednesday, April 16 at 1:30pm (in 2 weeks) - gce file_A.c - compiler running on file A

- 5pm if you attend/watch lecture - gcc file_B.c - compiler running on file B
- emacs - text editor

- firefox — web browser

Ask cs212-staff for extension if you can’t finish

- Tell us where you are with the project, .
- How much more you need to do, and Non-examples (implemented as one process):

- How much longer you need to finish - Multiple emacs frames or firefox windows (can be one process)

No credit for late assignments w/o extension * Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency

1/44 2/44

e Multiple processes can increase CPU utilization & throughput
- Overlap one process’s computation with another’s wait

* Processes and parallelism have been a fact of life much longer
than OSes have been around
- E.g., say takes 1 worker 10 months to make 1 widget
gcc - Company may hire 100 workers to make 100 widgets
- Latency for first widget >> 1/10 month
- Throughput may be < 10 widgets per month
(if can’t perfectly parallelize task)
H 80s >B 208 - Or 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

emacs ——> wait for input——wait for input———

* Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

- Running A and B concurrently makes B finish faster

H * You will see these effects in you Pintos project group
—_— — >

- May block waiting for partner to complete task

B e e - Takes time to coordinate/explain/understand one another’s code
- Labs will take > 1/3 time with three people

- But you will graduate faster than if you took only 1 class at a time

- Ais slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

3/44 4/44
A process’s view of the world Inter-Process Communication
max . process A E pr:ces: A ‘__-r
e Each process has own view of machine I B | p— o’
- Its own address space - *(char *)0xc000
differentin P, & P, A1,
- Its own open files i
- Its own virtual CPU (through preemptive heap
multitasking) -
. . . data kernel E; kernel
e Simplifies programming model
- gce does not care that firefox is running et @ ®

0

. . . * How can processes interact in real time?
* Sometimes want interaction between processes

- Simplest is through files: emacs edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.

(a) By passing messages through the kernel
(b) By sharing a region of physical memory
(c) Through asynchronous signals or alerts

5/44 6/44



e Original UNIX paper is a great reference on core system calls

@ (UNIX-centric) User view of processes
® int fork (void);

) - Create new process that is exact copy of current one
@ Kernel view of processes - Returns process ID of new process in “parent”
- Returns 0in “child”

e Threads ® int waitpid (int pid, int *stat, int opt);
- pid - process to wait for, or -1 for any

- stat — will contain exit value, or signal

- opt — usually 0 or WNOHANG

- Returns process ID or -1 on error

@ Thread implementation details

7/44 8/44

Deleting processes Running programs

® int execve (char *prog, char **argv, char **envp);

- prog - full pathname of program to run
e void exit (int status); - argv - argument vector that gets passed to main (ending NULL)
- envp - environment variables, e.g., PATH, HOME (ending NULL)

- Current process ceases to exist > .
- Replaces current process state with new instance of prog

- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error e Generally called through a wrapper functions
e int kill (int pid, int sig) ; - int execvp (char *prog, char *xargv);
Search PATH for prog, use current environment

- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always * Example: minish.c
- Loop that reads a command, then executes it

- int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

° Warning: Pintos exec more like combined fork/exec

9/44 10/44

minish.c (simplified) Manipulating file descriptors

pid_t pid; char **av;

void doexec () { ® int dup2 (int oldfd, int newfd);
execvp (av[0], av); - Closes newtd, if it was a valid descriptor
ziioh)(?v (o1 - Makes newfd an exact copy of oldfd
} - Two file descriptors will share same offset
(1seek on one will affect both)
é:r't;;’;la%n loop: */ o int fecntl (int £d, int cmd, ...) - misc fd configuration
parse_next_line_of_input (&av, stdin); - fentl (fd, F_SETFD, val) - sets close-on-exec flag
switch (pid = fork ()) { When vals 0, £d not inherited by spawned programs
Ca;:r;;li ("fork"): break: - fentl (fd, F_GETFL) - get misc fd flags
case 0: ’ ’ - fentl (£d, F_SETFL, val) - set misc fd flags
dei(;i}]{.if 05 e Example: redirsh.c
waitpid (pid, NULL, 0); break; - Loop that reads a command and executes it

- Recognizes command < input > output 2> errlog

11/44 12/44



void doexec (void) { ¢ int pipe (int fds[2]);
int fd; . . .
if (infile) { /* non-NULL for "command < infile" */ - Returns two file descriptors in £ds [0] and fds[1]
if ((fd = open (infile, O_RDONLY)) < 0) { - Data written to £ds[1] will be returned by read on £ds [0]
Ie’ili"im("l)(?nflle) > - When last copy of £ds[1] closed, £ds [0] will return EOF
} ’ - Returns 0 on success, -1 on error

if (£d !'= 0) {

dup2 (£d, 0); e Operations on pipes

close (fd); - read/write/close - as with files
} - When £ds[1] closed, read (£ds[0]) returns 0 bytes
¥ - When fds[0] closed, write(fds[1]):
/¥ ... do same for outfile—fd 1, errfile—fd 2 ... */ > Kills process with SIGPIPE

> Orif signal ignored, fails with EPIPE
execvp (av[0], av);

perror (av([0]); e Example: pipesh.c

exit (1); - Sets up pipeline command1 | command2 | command3 ...
}
13/44 14 /44
pipesh.c (simplified) Multiple file descriptors
void doexec (void) { * What if you have multiple pipes to multiple processes?
while (outcmd) { . .
int pipefds[2]; pipe (pipefds); ® poll system call lets you know which fd you can read/write
switch (fork ()) { typedef struct pollfd {
case -1: int fd;
perror ("fork"); exit (1); short events; // OR of POLLIN, POLLOUT, POLLERR, ...
case O: short revents; // ready events returned by kernel
dup2 (pipefds[1], 1); 5 ) ) )
close (pipefds [01); close (pipefds 1nn; int poll(struct pollfd *pfds, int nfds, int timeout);
outcmd = NULL; . . .
break;  Also put pipes/sockets into non-blocking mode
default: if ((n = fentl (s.fd_, F_GETFL)) == -
dup2 (pipefds[0], 0); || fentl (s.fd_, F_SETFL, n | O_NONBLOCK) == -1)
close (pipefds[0]); close (pipefds[1]); perror ("O_NONBLOCK") ;
parse_command_line (&av, &outcmd, outcmd);
break; - Returns errno EGAIN instead of waiting for data
} ¥ - Does not work for normal files (see aio for that)
K In practice, more efficient to use epo11 on linux or kqueue on *BSD
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* Most calls to fork followed by execve ® login - checks username/password, runs user shell
* Could also combine into one spawn system call - Runs with administrative privileges
(like Pintos exec) - Lowers privileges to user before exec’ing shell
« Occasionally useful to fork one process - Note doesn’t need fork to run shell, just execve
- Unix dump utility backs up file system to tape ¢ chroot - change root directory
- If tape fills up, must restart at some logical point - Useful for creating/debugging different OS image in a subdirectory
- Implemented by forking to revert to old state if tape ends * Some more linux-specific examples
* Real win is simplicity of interface - systemd-nspawn — runs program in container-like environment
- Tons of things you might want to do to child: Manipulate file - ip netns - runs program with different network namespace
descriptors, alter namespace, manipulate process limits ... - unshare - decouple namespaces from parent and exec program

- Yet fork requires no arguments at all
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* Without fork, needs tons of different options for new process
* Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonV,
CreateProcessWithTokenW,...

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,

_Inout_opt_ LPTSTR lpCommandLine,

_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
_In_ BOOL bInheritHandles,

_In_ DWORD dwCreationFlags,

_In_opt_ LPVOID lpEnvironment,

_In_opt_ LPCTSTR 1lpCurrentDirectory,

_In_ LPSTARTUPINFO lpStartupInfo,
_Out_ LPPROCESS_INFORMATION lpProcessInformation
)5

19/44

* Keep a data structure for each process

- Process Control Block (PCB) Process state
- Called proc in Unix, task_struct in Linux, Process ID
and just struct thread in Pintos User id, etc.

* Tracks state of the process
- Running, ready (runnable), waiting, etc.

Program counter

¢ Includes information necessary to run Registers

- Registers, virtual memory mappings, etc. Address space

- Open files (including memory mapped files) (VM data structs)
* Various other data about the process

- Credentials (user/group ID), signal mask, Open files

controlling terminal, priority, accounting
statistics, whether being debugged, which PCB
system call binary emulation in use, ...

21/44

Scheduling Scheduling policy

* How to pick which process to run

® Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes

* FIFO?
- Put threads on back of list, pull them from front:

head —> & ¢l = & &
R

tail ¢

- Pintos does this—see ready_list in thread.c
® Priority?
- Give some threads a better shot at the CPU
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@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

20/44

scheduler

dispatch terminated

running
interrupt .
1/0 or event 1/0 or event wait
completion @

* Process can be in one of several states
- new & terminated at beginning & end of life
- running - currently executing (or will execute on kernel return)
- ready - can run, but kernel has chosen different process to run
- waiting - needs async event (e.g., disk operation) to proceed

e Which process should kernel run?
- if0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1 runnable, must make scheduling decision

22/44

e Want to balance multiple goals

- Fairness - don’t starve processes

- Priority - reflect relative importance of procs

- Deadlines - must do X (play audio) by certain time
- Throughput - want good overall performance

- Efficiency - minimize overhead of scheduler itself

* No universal policy

- Many variables, can’t optimize for all
- Conflicting goals (e.g., throughput or priority vs. fairness)

* We will spend a whole lecture on this topic
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* Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk

- May make other process runnable—e.g., fork, write to pipe

Periodic timer interrupt
- If running process used up quantum, schedule another

* Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

Can preempt a process when kernel gets control

e Changing running process is called a context switch

* Very machine dependent. Typical things include:

Save program counter and integer registers (always)
Save floating point or other special registers

Save condition codes

Change virtual address translations

* Non-negligible cost

- Save/restore floating point registers expensive
> Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)
> HW Optimization 1: don’t flush kernel’s own data from TLB

- Usually causes more cache misses (switch working sets)

> HW Optimization 2: use tag to avoid flushing any data

| code || data || files |

| code || data || files |

registers stack

thread —> ;

T T
registers ||| registers |[| registers

stack

stack

stack

:

:

g_

r— thread

single-threaded process

multithreaded process

e Athread is a schedulable execution context
- Program counter, stack, registers, ...

e Simple programs use one thread per process

e But can also have multi-threaded programs

- Multiple threads running in same process’s address space
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process P, operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,
.
.

reload state from PCB;

ridle interrupt or system call executing

save state into PCB;

J reload state from PCB,,
executing I

idle

idle
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@ (UNIX-centric) User view of processes
@ Kernel view of processes
©® Threads

@ Thread implementation details
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* Most popular abstraction for concurrency
- Lighter-weight abstraction than processes
- All threads in one process share memory, file descriptors, etc.

¢ Allows one process to use multiple CPUs or cores

e Allows program to overlap /0 and computation
- Same benefit as OS running emacs & gcc simultaneously
- E.g., threaded web server services clients simultaneously:
for (5;) {

¢ = accept_client();
thread_create(service_client, c);

}
¢ Most kernels have threads, too
- Typically at least one kernel thread for every process

- Switch kernel threads when preempting process
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Thread package API Kernel threads?

Limitations of kernel-level threads Alternative: User threads

tid thread_create (void (*fn) (void *), void *arg);
- Create a new thread, run £n with arg

void thread_exit ();
- Destroy current thread

void thread_join (tid thread);
- Wait for thread thread to exit

Plus lots of support for synchronization [in 3 weeks]
See [Birell] for good introduction

Can have preemptive or non-preemptive threads

- Preemptive causes more race conditions
- Non-preemptive can’t take advantage of multiple CPUs
- Before prevalence of multicore, most kernels non-preemptive

Every thread operation must go through kernel

- create, exit, join, synchronize, or switch for any reason

- On my laptop: syscall takes 100 cycles, fn call 5 cycles

- Result: threads 10x-30x slower when implemented in kernel
One-size fits all thread implementation

- Kernel threads must please all people

- Maybe pay for fancy features (priority, etc.) you don’t need
General heavy-weight memory requirements

- E.g., requires a fixed-size stack within kernel

- Other data structures designed for heavier-weight processes

Allocate a new stack for each thread_create
Keep a queue of runnable threads
Replace networking system calls (read/write/etc.)

- If operation would block, switch and run different thread
Schedule periodic timer signal (setitimer)

- Switch to another thread on timer signals (preemption)
Multi-threaded web server example

- Thread calls read to get data from remote web browser

- “Fake” read function makes read syscall in non-blocking mode
- No data? schedule another thread

- Ontimer or when idle, check which connections have new data

31/44
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<«— user thread

NN
© 66 b

e Canimplement thread_create as a system call
* To add thread_create to an OS that doesn’t have it:

- Start with process abstraction in kernel

- thread_create like process creation with features stripped out
> Keep same address space, file table, etc., in new process
> rfork/clone syscalls actually allow individual control

* Faster than a process, but still very heavy weight
%i.e., native or non-green threads; “kernel threads” can also mean threads
inside the kernel, which typically implement native threads)

32/44

.

<«— kernel thread

* Implement as user-level library (a.k.a. green threads)
- One kernel thread per process

- thread_create, thread_exit, etc., just library functions )
34 /44

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details
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Background: calling conventions Background: procedure calls

Procedure call
* Registers divided into 2 groups . .
) Call save active caller registers
- Functions free to clobber caller-saved regs areuments h ts to stack
(%eax [return val], %edx, & %ecx on x86) & push arguments to stac
- But must restore callee-saved ones to return addr call foo (pushes pc) \ '
original value upon return (on x86, %ebx, f save needed callee registers
%esi, hedi, plus %ebp and %esp) fp old frame ptr Cr
« sp register always base of stack Carltlee?;i:::d restore callee saved registers
- Frame pointer (fp) is old sp & creall / jump back to calling function
restore stack+caller regs.
* Local variables stored in registers and on ;‘r?gi;‘r’:; & )
stack sp e Caller must save some state across function call
* Function arguments go in caller-saved - Return address, caller-saved registers
regs and on stack © Other state does not need to be saved

- With 32-bit x86, all arguments on stack - Callee-saved regs, global variables, stack pointer
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Pintos thread implementation i386 switch_threads
 Pintos implements user processes on top of its own threads pushl %ebx; pushl %ebp # Save callee-saved regs
- Code for threads in kernel very similar to green threads pushl %esi; pushl %edi
* Per-thread state in thread control block structure mov thread_stack_ofs, %edx # %edx = offset of stack field
# in thread struct
struct thread {
C movl 20(%esp), %eax # %eax = cur
uint8_t *stack; /* Saved stack pointer. */ movl %esp, (%eax,%edx,1) # cur->stack = Jesp
}; o movl 24(%esp), %ecx # %ecx = next
I 0 0, 0, 0, —
uint32_t thread_stack_ofs = offsetof(struct thread, stack); movl (hecx,%edx,1), hesp # hesp = next->stack
o C declaration for asm thread-switch function: popl %edi; popl Zesi # Restore calle-saved regs

popl %ebp; popl ‘%ebx
- struct thread *switch_threads (struct thread *cur,

struct thread #*next); ret # Resume execution

* Also thread initialization function to create new stack: * This is actual code from Pintos switch.S (slightly reformatted)

- void thread create (const char *name, - See Thread Switching in documentation
thread_func *function, void *aux);

39/44 40/44
ek Jack ek ock
next next next next
current current current current
, return addr return addr return addr return addr
kesp %ebx Yhebx %hebx
%ebp %ebp %ebp
%hesi %hesi hesi
%hedi Yhedi %hedi
hesp
¢ This is actual code from Pintos switch.S (slightly reformatted) e Thisis actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation - See Thread Switching in documentation
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i386 switch_threads i386 switch_threads

current next current next
stack stack stack stack
next next next next

current current current current

return addr return addr return addr return addr .
heS
%ebx %ebx %ebx P
%ebp %ebp %ebp callee-saved
%hesi %esi %hesi registers
restored
%hedi %hedi Yhedi
hesp
e This is actual code from Pintos switch.S (slightly reformatted) e This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation - See Thread Switching in documentation
40/44 40/44

Limitations of user-level threads User threads on kernel threads

* Auser-level thread library can do the same thing as Pintos ; ;‘_ .

* Can’t take advantage of multiple CPUs or cores

* Ablocking system call blocks all threads
- Can use 0_NONBLOCK to avoid blocking on network connections
- But doesn’t work for disk (e.g., even aio doesn’t work for metadata)

- So one uncached disk read/synchronous write blocks all threads
<«— kernel thread

* A page fault blocks all threads hread | donk thread
¢ User threads implemented on kernel threads
* Possible deadlock if one thread blocks on another -~ Multiple kerneElevel threads per process

- May block entire process and make no progress - thread_create, thread_exit still library functions as before
- [More on deadlock in future lectures.] « Sometimes called n : m threading

- Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
41/44 42 /44

e Threads best implemented as a library

* Many of same problems as n : 1 threads - But kernel threads not best interface on which to do this
- Blocked threads, deadlock, .. o Better kernel interfaces have been suggested
¢ Hard to keep same # ktrheads as available CPUs - See Scheduler Activations [Anderson et al.]
- Kernel knows how many CPUs available - Maybe too complex to implement on existing 0Ses (some have
- Kernel knows which kernel-level threads are blocked added then removed such features)
- But tries to hide these things from applications for transparency « Standard threads still fine for most purposes
- So user-level thread scheduler might think a thread is running - Use kernel threads if I/0 concurrency main goal

while underlying kernel thread is blocked . N
- Use n : mthreads for highly concurrent (e.g,. scientific
e Kernel doesn’t know relative importance of threads applications) with many thread switches
- Mlght preempt kthread in which library holds important lock e But concurrency greatly increases Complexity

- More on that in concurrency, synchronization lectures...
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#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>

char **av;
int avsize;

void
avreserve (int n)

{

int oldavsize = avsize;

if (avsize > n + 1)

return;
avsize = 2 * (oldavsize + 1);
if (avsize <= n)
avsize = n + 1;
av = realloc (av, avsize * sizeof (*av));

while (oldavsize < avsize)
av[oldavsize++] = NULL;
}

void
parseline (char *1line)

{

char *a;

int n;

for (n = 0; n < avsize; n++)
av[n] = NULL;

a = strtok (line, "™ \t\r\n");

for (n = 0; a; n++) {
avreserve (n);
av[n] = a;

a = strtok (NULL, "™ \t\r\n");

}

void
doexec (void)
{

execvp (av[0], av);
perror (av[0]);
exit (1);

}

int

main (void)

{
char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |
write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),

write (2, "EOF\n", 4);

stdin)))

{
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exit (0);
}
parseline (line);
if (lav[O0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, O0);
break;
}



redirsh.c

#include
#include
#include
#include
#include
#include
#include

Fri Mar

<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>
<fcntl.h>
<sys/types.h>
<sys/wait.h>

**av;
*infile;
char *outfile;
char *errfile;
int avsize;

char
char

void
avreserve

{

int oldavsize

(int n)

avsize;
if (avsize > n + 1)
return;

avsize 2 %
if (avsize <= n)
avsize n + 1;
av realloc (av, avsize *
while (oldavsize < avsize)
av|[oldavsize++] NULL;

}

void
parseline
{
char *a;
int nj;

(char *1line)

outfile errfile
0; n < avsize;

NULL;

infile =
for (n
av([n]

strtok
(n 0;
(al0]

infile

a
for
if

(line,

a; n++) {

P l<l)

all] 2 a + 1

else if (a[0] == ’'>")
outfile all] 2 a + 1

else 1if (a[0]
errfile al2]

else {
avreserve
av[n] a;

== 4 ’

? a+ 2

(n);

}
a strtok (NULL,

}
void

doexec

{
int fd;

(void)

if (infile) {
if ((fd open (infile,
perror (infile);

exit (1);

&& all]

(oldavsize + 1);

sizeof

NULL;

n++)

\t\r\n");

strtok

strtok

strtok

\t\r\n");

O_RDONLY) )

28 10:27:19 2025

(*av));

(NULL,

(NULL,

’>’)

(NULL,

< 0)

{

"

\t\r\n");
\t\r\n");

\t\r\n");
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}

if (£d !'= 0) {
dup2 (fd, 0);
close (fd);

}

if (outfile) {

if ((fd = open (outfile, O_WRONLY |O_CREAT |O_TRUNC,

perror (outfile);
exit (1);

}

if (£d !'= 1) {
dup2 (fd, 1);
close (fd);

}

if (errfile) {

if ((fd = open (errfile, O_WRONLY |O_CREAT|O_TRUNC,

perror (outfile);
exit (1);

}

if (£d !'= 2) {
dup2 (fd, 2);
close (fd);

execvp (av[0], av);
perror (av[0]);
exit (1);

}

int

main (void)

{
char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |

write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),
write (2, "EOF\n", 4);
exit (0);

}

parseline (line);

if (lav[O0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, 0);
break;

}

stdin)))

{
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#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>
char **av;

char *infile;

char *outfile;

char *errfile;

char *outcmd;

int avsize;

void

avreserve (int n)

{

int oldavsize =

if (avsize > n + 1)
return;
avsize = 2 * (oldavsize + 1);
if (avsize <= n)
avsize = n + 1;
av = realloc (av, avsize * sizeof (*av));
while (oldavsize < avsize)
av|[oldavsize++] = NULL;
}
void
parseline (char *line)
{
char *a;
int nj;
outcmd = infile = outfile = errfile = NULL;
for (n = 0; n < avsize; n++)
av[n] = NULL;
a = strtok (line, "™ \t\r\n");
for (n = 0; a; n++) {
if (a[0] == ’'<")
infile = a[l] ? a + 1 strtok (NULL,
else if (a[0] == ’'>")
outfile = af[l] 2?2 a + 1 strtok (NULL,
else if (a[0] == "|") {
if (laflll)
outcmd = strtok (NULL, "");
else {
outcmd = a + 1;
a = strtok (NULL, "");
while (a > outcmd && 'a[-1])
*__a 4 I,.
}
}
else if (a[0] == "2’ && a[l] == ">")
errfile = a[2] ? a + 2 strtok (NULL,
else {
avreserve (n);
av[n] = a;
}
a = strtok (NULL, " \t\r\n");

avsize;

\t\r\n");
\t\r\n");

\t\r\n");
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}

void
doexec (void)

{
int fd;

while (outcmd) {
int pipefds([2];

if (outfile) {
fprintf (stderr, "syntax error: > in pipe writer\n");
exit (1);

}

if (pipe (pipefds) < 0) {
perror ("pipe");
exit (0);

}

switch (fork ()) {
case —-1:
perror ("fork");
exit (1);
case O:
if (pipefds([l] !'= 1) {
dup2 (pipefds[l], 1);
close (pipefds[1l]);
}
close (pipefds[0]);
outcmd = NULL;
break;
default:
if (pipefds[0] != 0) {
dup2 (pipefds[0], 0);
close (pipefds[0]);
}
close (pipefds[1l]);
parseline (outcmd);
if (infile) {
fprintf (stderr, "syntax error: < in pipe reader\n");
exit (1);
}

break;

}

if (infile) {

if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}

if (£d !'= 0) {
dup2 (fd, 0);
close (fd);

}

if (outfile) {
if ((fd = open (outfile, O_WRONLY|O_CREAT|O_TRUNC, 0666)) < 0) {
perror (outfile);
exit (1);
}
if (£d !'= 1) {
dup2 (fd, 1);
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}

close (fd);

}

if (errfile) {

if ((fd = open (errfile, O_WRONLY |O_CREAT|O_TRUNC,

perror (errfile);
exit (1);

}

if (f£d !'= 2) {
dup2 (fd, 2);
close (£fd);

execvp (av([0], av);
perror (av[0]);
exit (1);

int
main (void)

{

char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |

write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),
write (2, "EOF\n", 4);
exit (0);

}

parseline (line);

if (lav[0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, 0);
break;

}

stdin)))

{
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® tid thread_create (void (*fn) (void *), void *arg); int flagl = 0, flag2 = 0;

- Create a new thread that calls fn with arg void pl (void *ignored) {
X . flagl = 1;
® void thread_exit (); if (!flag2) { critical_section_1 (); }
® void thread_join (tid thread); +
* The execution of multiple threads is interleaved void p2 (void *ignored) {
. flag2 = 1;
* Can have non-preemptive threads: if (1flagl) { critical_section_2 O); }
- One thread executes exclusively until it makes a blocking call b
e Or preemptive threads (what we usually mean in this class): int main () {
- May switch to another thread between any two instructions. ;;d(;d = thread_create (p1, NULL);
* Using multiple CPUs is inherently preemptive ) thread_join (id);
- Evenif you don’t take CPU, away from thread T, another thread on
CPU; can execute “between” any two instructions of T QI Can both critical sections run?
1/44 2/44
Program B Program C
int a = 0;
int data = 0; int b = 0;

int ready = 0;
void pl (void *ignored) {

void pl (void *ignored) { a=1;
data = 2000; }
ready = 1;
} void p2 (void *ignored) {
if (a == 1)
void p2 (void *ignored) { b =1;
while (!ready) }
use (data); void p3 (void *ignored) {
} if (b ==
use (a);
int main O { ... } }
Q: Can use be called with value 07 Q: If p1-3 run concurrently, can use be called with value 0?
3/44 4/44

Correct answers Correct answers

[git push slides to web site now] « Program A: | don’t know
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Correct answers Correct answers

* Program A: |1 don’t know ® Program A: | don’t know
* Program B: | don’t know * Program B: |1 don’t know
e Program C: | don’t know

Why don’t we know?
- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

* Note: Examples, other content from [Adve & Gharachorloo]

¢ Another great reference: Why Memory Barriers
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Definition
@ Memory consistency Sequential consistency: The result of execution is as if all operations

were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.

The criti .
@ Thecritical section problem B

© Mutexes and condition variables ¢ Boils down to two requirements on loads and stores:

. o 1. Maintaining program order of each individual processor
@ Implementing synchronization 2. Ensuring write atomicity

* Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads

- Result may not correspond to any instruction interleaving on 1 CPU

© Alternate synchronization abstractions

* Why doesn’t all hardware support sequential consistency?
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SC thwarts hardware optimizations SC thwarts compiler optimizations

Complicates write buffers
- E.g., read flagn before flag(3 — n) written through in Program A

Code motion

Caching value in register

, . . .

Can’t re-order overlapping write operations - Collapse multiple loads/stores of same address into one operation
- Concurrent writes to different memory modules
- Coalescing writes to same cache line

e Common subexpression elimination
- Could cause memory location to be read fewer times

Complicates non-blocking reads
- E.g., speculatively prefetch datain Program B

Loop blocking
- Re-arrange loops for better cache performance

Makes cache coherence more expensive

- Must delay write completion until invalidation/update (Program B)

- Can’t allow overlapping updates if no globally visible order
(Program C)

¢ Software pipelining

- Move instructions across iterations of a loop to overlap instruction
latency with branch cost
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x86 consistency [intel 3a, §8.2] x86 WB consistency

* x86 supports multiple consistency/caching models * Old x86s (e.g, 486, Pentium 1) had almost SC
- Memory Type Range Registers (MTRR) specify consistency for - Exception: A read could finish before an earlier write to a different
ranges of physical memory (e.g., frame buffer) loc?tlon . s
- Page Attribute Table (PAT) allows control for each 4K page - Which of Programs A, B, C might be affected?

* Reminder:
- Program A: flagl = 1; if (!flag2) critical_section_1();
- Program B:while (!ready); use(data);
- Program C:P2if (a == 1) b = 1; andP3if (b == 1) use(a);

* Choices include:

- WB: Write-back caching (the default)
- WT: Write-through caching (all writes go to memory)
- UC: Uncacheable (for device memory)

- WC: Write-combining - weak consistency & no caching
(used for frame buffers, when sending a lot of data to GPU)

* Some instructions have weaker consistency

- String instructions (written cache-lines can be re-ordered)

- Special “non-temporal” store instructions (movntx) that bypass
cache and can be re-ordered with respect to other writes
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x86 WB consistency x86 atomicity

¢ Old x86s (e.g, 486, Pentium 1) had almost SC
- Exception: A read could finish before an earlier write to a different

® lock prefix makes a memory instruction atomic

location - Historically locked bus for duration of instruction (expensive!)
- Which of Programs A, B, C might be affected?  JustA - Now requires exclusively caching memory, synchronizing with
. . other memory operations
* Newer x86s also let a CPU read its own writes early . Y .p
latile int flagl Latile int flagd - All lock instructions totally ordered
votatite in agts vosatite in agss - Other memory instructions cannot be re-ordered with locked ones
int pl (void) int p2 (void) . L. ) .
{ { ¢ xchg instruction is always locked (even without prefix)
register int f, g; register int f, g; . . . .
ﬂfgl -1, & ﬂigz -1 & * Special barrier (or “fence”) instructions can prevent
f = flagl; f = flag2; re-ordering
= flag2; = flagl; . .
fetumag*£ + g %etumag*% + g - 1fence - can’t be reordered with reads (or later writes)
} ¥ - sfence - can’t be reordered with writes

(e.g., use after non-temporal stores, before setting a ready flag)

- E.g., both p1 and p2 can return 2: - mfence - can’t be reordered with reads or writes

- Older CPUs would wait at “¢ = ...” until store complete
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¢ Often we reason about concurrent code assuming SC

* But for low-level code, either know your memory model or

@ Memory consistency program for worst-case relaxed consistency (~DEC alpha)
- May need to sprinkle barrier/fence instructions into your source
@ Thecritical section problem - Or may need compiler barriers to restrict optimization
* For most code, avoid depending on memory model
@ Mutexes and condition variables - ldea: If you obey certain rules (discussed later)

...system behavior should be indistinguishable from SC

@ Implementing synchronization Let’s for now say we have sequential consistency

Example concurrent code: Producer/Consumer
@ Alternate synchronization abstractions - buffer stores BUFFER_SIZE items

- count is number of used slots

- out is next empty buffer slot to fill (if any)

- inis oldest filled slot to consume (if any)
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void producer (void *ignored) {
for (53) {
item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)
/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

void consumer (void *ignored) {
for (5;) {
while (count == 0)
/* do nothing */;
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed) ;

}

Q: What can go wrong in above threads (even with SC)?
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Data races (continued) Data races (continued)

* What about a single-instruction add?

- E.g.,i386 allows single instruction addl $1,_count
- Soimplement count++/-- with one instruction
- Now are we safe?
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Desired properties of solution Peterson’s solution

® Mutual Exclusion

- Only one thread can be in critical section at a time
® Progress

- Say no process currently in critical section (C.S.)

- One of the processes trying to enter will eventually get in
* Bounded waiting

- Once a thread T starts trying to enter the critical section, there is a
bound on the number of times other threads get in

* Note progress vs. bounded waiting

- If no thread can enter C.S., don’t have progress

- If thread A waiting to enter C.S. while B repeatedly leaves and
re-enters C.S. ad infinitum, don’t have bounded waiting
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® count may have wrong value

¢ Possible implementation of count++ and count--
register+count register+count
register«—register + 1 register«register — 1
count«—register count«—register
* Possible execution (count one less than correct):
register«—count
register«register + 1
register«+count
register«+register — 1
count«register
count«register
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* What about a single-instruction add?
- E.g.,i386 allows single instruction addl $1,_count
- So implement count++/-- with one instruction
- Now are we safe? Not on multiprocessors!
e Asingle instruction may encode a load and a store operation

- S.C. doesn’t make such read-modify-write instructions atomic
- So on multiprocessor, suffer same race as 3-instruction version

* Can make x86 instruction atomic with 1ock prefix

- But 1ock potentially very expensive

- Compiler assumes you don’t want penalty, doesn’t emit it
* Need solution to critical section problem

- Place count++ and count-- in critical section

- Protect critical sections from concurrent execution
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o Still assuming sequential consistency
* Assume two threads, 7o and T;

¢ Variables
- int not_turn; //notthisthread’sturnto enter C.S.
- bool wants[2]; //wants[i] indicates if T; wants to enter C.S.

¢ Code:

for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();
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for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();

@ Memory consistency

@ The critical section problem

¥
¢ Mutual exclusion - can’t both be in C.S. ® Mutexes and condition variables
- Would mean wants[0] == wants[1] == true,

so not_turn would have blocked one thread from C.S.
* Progress - given demand, one thread can always enter C.S.
- If T;_jdoesn’t want C.S., wants[1-i] == false, S0 T; won’t loop
- If both threads want in, one thread is not the not_turn thread
* Bounded waiting - similar argument to progress

- If T; wants lock and T,_; tries to re-enter, T;_; will set
not_turn = 1 - i,allowingT;in

@ Implementing synchronization

© Alternate synchronization abstractions
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* Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

e All global data should be protected by a mutex!
- Global =accessed by more than one thread, at least one write
- Exception is initialization, before exposed to other threads
- This is the responsibility of the application writer

* Must adapt to machine memory model if not SC

- If you need machine-specific barriers anyway, might as well take
advantage of other instructions helpful for synchronization
¢ If you use mutexes properly, behavior should be

indistinguishable from Sequential Consistency
- This is the responsibility of the threads package (& compiler)
- Mutex is broken if you use properly and don’t see SC

* Want to insulate programmer from implementing
synchronization primitives

* Thread packages typically provide mutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

© OS kernels also need synchronization

- Some mechanisms look like mutexes
- Butinterrupts complicate things (incompatible w. mutexes)

- Only one thread acquires m at a time, others wait
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Same concept, many names Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

* Most popular application-level thread API: Pthreads

- Function names in this lecture all based on Pthreads
- Just add pthread_ prefix
- E.g., pthread_mutex_t, pthread_mutex_lock,...

void producer (void *ignored) {
for (5;) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);

e Cllusesmtx_instead of mutex_, C++11 uses methods on mutex
while (count == BUFFER_SIZE) {

® Pintos uses struct lock for mutexes:
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);

¢ Extra Pintos feature:

- Release checks that lock was acquired by same thread
- bool lock_held_by_current_thread (struct lock *lock);
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mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);
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void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

consume_item (nextConsumed);
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Improved producer Improved consumer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (5;) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty) ;
mutex_unlock (&mutex);
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Re-check conditions

e Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);

* Otherwise, breaks with spurious wakeup or two consumers
- Start where Consumer 1 has mutex but buffer empty, then:

Consumer 1 Consumer 2 Producer

cond_wait (...); mutex_lock (...);
count++;
cond_signal (...);

mutex_lock (...); mutex_unlock (...);

if (count == 0)

use buffer[out] ...
count--;
mutex_unlock (...);
use buffer[out] ... «— Noitemsin buffer
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* Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

o Better to inform scheduler of which threads can run

» Typically done with condition variables

e struct cond_t; (pthread_cond_t Or condition in Pintos)
® void cond_init (cond_t *, ...);

® void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing
® void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c
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void consumer (void *ignored) {

for (5;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex) ;

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed) ;
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Condition variables (continued)

° Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
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Condition variables (continued) Other thread package features

° Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
¢ Can end up stuck waiting when bad interleaving

Producer Consumer

while (count == BUFFER_SIZE)
mutex_unlock (&mutex) ;
mutex_lock (&mutex);

count--;
cond_signal (&nonfull);
cond_wait (&nonfull);

* Problem: cond_wait & cond_signal do not commute

@ Memory consistency

@ The critical section problem

@ Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

Implementing synchronization Approach #1: Disable interrupts

* Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked; /* true if locked */
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thread_id_t owner; /* thread holding lock, if locked */

thread_list_t waiters; /* threads waiting for lock */
lower_level_lock_t 1lk; /* Protect above fields */
} mutex_t;

- Fine, so long as we avoid data races on the mutex itself

* Need lower-level lock 1k for mutual exclusion

- Internally, mutex_x functions bracket code with
lock(&mutex->1k) ... unlock (&mutex->1k)

- Otherwise, data races! (E.g., two threads manipulating waiters)
e How to implement lower_level_lock_t?

- Could use Peterson’s algorithm, but typically a bad idea
(too slow and don’t know maximum number of threads)
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Alerts - cause exception in a thread
Timedwait - timeout on condition variable
Shared locks - concurrent read accesses to data

Thread priorities - control scheduling policy

- Mutex attributes allow various forms of priority donation
(will be familiar concept after lab 1)

Thread-specific global data
- Need for things like errno

Different synchronization primitives (later in lecture)
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Implementing synchronization

Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked;
thread_id_t owner;
thread_list_t waiters;

/* true if locked */
/* thread holding lock, if locked */
/* threads waiting for lock */

} mutex_t;
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Only for apps with n : 1 threads (1 kthread)
- Cannot take advantage of multiprocessors
- But sometimes most efficient solution for uniprocessors

Typical setup: periodic timer signal caught by thread
scheduler

Have per-thread “do not interrupt” (DNI) bit
lock (1k): setsthread’s DNI bit

If timer interrupt arrives

- Check interrupted thread’s DNI bit

- If DNI clear, preempt current thread

- If DNI set, set “interrupted” (1) bit & resume current thread
unlock (1k): clears DNI bit and checks I bit

- If I bit is set, immediately yields the CPU
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Approach #2: Spinlocks Synchronization on x86

* Most CPUs support atomic read-[modify-]write

Test-and-set only one possible atomic instruction

° Example: int test_and_set (int *lockp);
- Atomically sets *lockp = 1 and returns old value

- Special instruction - no way to implement in portable C99 - Can use to implement test-and-set
(C11 supports with explicit atomic_flag_tet_and_set function)

® x86 xchg instruction, exchanges reg with mem

_test_and_set:

¢ Use this instruction to implement spinlocks: movl  4(%esp), %hedx # %edx = lockp
#define lock(lockp) while (test_and_set (lockp)) movl — $1, Jeax # heax = 1
#define trylock(lockp) (test_and_set (lockp) == 0) xchgl  Jeax, (hedx) # swap (feax, *lockp)
#define unlock(lockp) *lockp = 0 ret

e CPU locks memory system around read and write

- Recall xchgl always acts like it has implicit 1ock prefix
- Prevents other uses of the bus (e.g., DMA)

* Spinlocks implement mutex’s lower_level_lock_t

e Can you use spinlocks instead of mutexes?
- Wastes CPU, especially if thread holding lock not running
- Mutex functions have short C.S., less likely to be preempted

Usually runs at memory bus speed, not CPU speed

- On multiprocessor, sometimes good to spin for a bit, then yield - Much slower than cached read/buffered write
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Synchronization on alpha Kernel Synchronization
° 1d1_1- load locked o Should kernel use locks or disable interrupts?

t1_c - store conditional (reg«0 if not atomic w. 1d1_1 .
sh-e (reg ) ¢ Old UNIX had 1 CPU, non-preemptive threads, no mutexes

1dq_1 v0, 0(a0) v0 = *lockp (LOCKED) - Interface designed for single CPU, so count++ etc. not data race

#
bne vo, 1f # if (v0) return - ...Unless memory shared with an interrupt handler
addq zero, 1, vO #v0 =1
#
#

_test_and_set:

stq_c vO0, 0(a0) *lockp = vO (CONDITIONAL) int x = splhigh (); /* Disable interrupts */

beq v0, _test_and_set # if (failed) try again /* touch data shared with interrupt handler ... */
mb splx (x); /* Restore previous state */
addq zero, zero, vO # return O
1: - C.f,intr_disable/intr_set_level in Pintos, and
ret zero, (ra), 1 preempt_disable / preempt_enable in linux
* Note: Alpha memory consistency weaker than x86 e Used arbitrary pointers like condition variables
- Want all CPUs to think memory accesses in C.S. happened after - int [t]sleep (void *ident, int priority, ...);
acquiring lock, before releasing put thread to sleep; will wake up at priority (~cond_wait)
- Memory barrier instruction mb ensures this (c.f. nfence on x86) - int wakeup (void *ident);
- See Why Memory Barriers for why alpha still worth understanding wake up all threads sleeping on ident (~cond_broadcast)
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* Nowadays, should design for multiprocessors * Nowadays, should design for multiprocessors
- Evenif first version of OS is for uniprocessor - Evenif first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads - Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks - That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks) (sleeping locks means mutexes, as opposed to spinlocks)
e Multiprocessor performance needs fine-grained locks e Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs - Want to be able to call into the kernel on multiple CPUs
e If kernel has locks, should it ever disable interrupts? e If kernel has locks, should it ever disable interrupts?

- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So even modern OSes have support for disabling interrupts

- Often uses DNI trick when cheaper than masking interrupts in
hardware
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e A Semaphore is initialized with an integer N

¢ Provides two functions:

- sem_wait (S) (originally called P, called sema_down in Pintos)
- sem_signal (8) (originally called V, called sema_up in Pintos)

@ Memory consistency

@ The critical section problem i .
* Guarantees sem_wait will return only N more times than

sem_signal called

- Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

@ Mutexes and condition variables

@ Implementing synchronization » Semaphores give elegant solutions to some problems

- Unlike condition variables, wait & signal commute

Alternate synchronization abstractions . . . .
© y e Linux primarily uses semaphores for sleeping locks

- sema_init, down_interruptible,up,...
- Also weird reader-writer semaphores, rw_semaphore [Love]
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Semaphore producer/consumer

e Initialize full to 0 (block consumer when buffer empty) . .
e Initialize empty to N (block producer when queue full) e Other more esoteric primitives yo.u might encounter
void producer (void *ignored) { - Plan 9 used a rendezvous mechanism
for (5;) { - Haskell uses MVars (like channels of depth 1)

item *nextProduced = produce_item ();

sem_wait (&empty);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

Various synchronization mechanisms

* Many synchronization mechanisms equally expressive
- Pintos implements locks, condition vars using semaphores

sem_signal (&full);

T
}
void consumer (void *ignored) {
for (5;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed) ;
}
¥
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- Could have been vice versa
- Can even implement condition variables in terms of mutexes

e Why base everything around semaphore implementation?

- High-level answer: no particularly good reason

- If you want only one mechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Because sem_wait and sem_signal commute, eliminates problem
of condition variables w/o mutexes
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4. Scheduling



CPU;
= 1 1 & CPU,
CPU,

* The scheduling problem:

- Have k jobs ready to run
- Have n > 1 CPUs that can run them

e Which jobs should we assign to which CPU(s)?
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@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Vvirtual time case studies
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When do we schedule CPU? When do we schedule CPU?

scheduler
dispatch

terminated

ready

running

interrupt

1/0 or event 1/0 or event wait

completion waiting
¢ Scheduling decisions may take place when a process:

1. Switches from running to ready state
2. Switches from new/waiting to ready

3. Switches from running to waiting state
4. Exits

* Non-preemptive schedulers use 3 &4 only
* Preemptive schedulers run at all four points
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scheduler

dispatch terminated

ready

running

interrupt

1/0 or event 1/0 or event wait

completion waiting
¢ Scheduling decisions may take place when a process:

1. Switches from running to ready state
—> 2. Switches from new/waiting to ready

3. Switches from running to waiting state

4. Exits

* Non-preemptive schedulers use 3 &4 only

* Preemptive schedulers run at all four points
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scheduler
dispatch

terminated

ready running

interrupt

1/0or even&
completion @
¢ Scheduling decisions may take place when a process:
—> 1. Switches from running to ready state
2. Switches from new/waiting to ready

3. Switches from running to waiting state
4. Exits

1/0 or event wait

* Non-preemptive schedulers use 3 &4 only
* Preemptive schedulers run at all four points
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When do we schedule CPU? When do we schedule CPU?

scheduler

dispatch terminated

ready

nt
completion

running

interrupt

1/0 or eve 1/0 or event wait

waiting
¢ Scheduling decisions may take place when a process:

1. Switches from running to ready state
2. Switches from new/waiting to ready

—> 3. Switches from running to waiting state
4. Exits

¢ Non-preemptive schedulers use 3 &4 only

* Preemptive schedulers run at all four points
3/45



When do we schedule CPU? When do we schedule CPU?
C e o G o T D

ready running ready running
1/0 or event interrupt 1/0 or event wait 1/0 or even& interrupt 1/0 or event wait
completion completion waiting
¢ Scheduling decisions may take place when a process: ¢ Scheduling decisions may take place when a process:
1. Switches from running to ready state 1. Switches from running to ready state
2. Switches from new/waiting to ready 2. Switches from new/waiting to ready
3. Switches from running to waiting state 3. Switches from running to waiting state
— 4. Exits 4. Exits
* Non-preemptive schedulers use 3 &4 only —> Non-preemptive schedulers use 3 & 4 only
* Preemptive schedulers run at all four points * Preemptive schedulers run at all four points
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When do we schedule CPU? Scheduling criteria
o\ad’mitted Séigf)g?clﬁr i terminated * Why do we care?

- What goals should we have for a scheduling algorithm?

ready running

1/0 or event interrupt

1/0 or event wait
completion

waiting

¢ Scheduling decisions may take place when a process:
1. Switches from running to ready state
2. Switches from new/waiting to ready
3. Switches from running to waiting state
4. Exits
* Non-preemptive schedulers use 3 &4 only

— Preemptive schedulers run at all four points
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Scheduling criteria Example: FCFS Scheduling

* Why do we care?
- What goals should we have for a scheduling algorithm?

* Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P; needs 24 sec, while P, and P; need 3.
- Say Py, P5 arrived immediately after P, get:

e Turnaround time - time for each process to complete P, P, li
- Lower is better

e Throughput - # of processes that complete per unit time
- Higher is better

. . ) 0 24 27 30
* Response time - time from request to first response

- lL.e., time between waiting—ready transition and ready— running ¢ Dirt simple to implement—how good is it?
(e.g., key press to echo, not launch to exit) * Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
- Lower is better R
e Turnaround Time: Py : 24,P, : 27,P3 : 30

* Above criteria are affected by secondary criteria - Average TT: (24 + 27 + 30)/3 = 27

- CPU utilization - fraction of time CPU doing productive work
e . o e Can we do better?
- Waiting time - time each process waits in ready queue
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FCFS continued FCFS continued

* Suppose we scheduled P,, P;, then P;

- Would get:

-

Py

0 3 6

e Throughput: 3 jobs /30 sec =0.1 jobs/sec

e Turnaround time: P; : 30, P, : 3,

- Average TT: (30 +3+6)/3 =13

P326

- much less than 27

® Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT
e Can a scheduling algorithm improve throughput?

View CPU and I/O devices the same Bursts of computation & 1/0

* CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.

- With network, part of job may run on remote CPU

* Scheduling 1-CPU system with n 1/0 devices like scheduling

asymmetric (n + 1)-CPU multiprocessor

- Result: all 1/0 devices + CPU busy = (n + 1)-fold throughput gain!
* Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

30

wait for wait for wait for
TP | gisk disk disk H
iiply NI
multiply
1
wait for CPU

Histogram of CPU-burst times FCFS Convoy effect
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¢ What does this mean for FCFS?

40

* Suppose we scheduled P,, P;, then P;

- Would get:

: :

0 3 6

e Throughput: 3 jobs /30 sec = 0.1 jobs/sec

e Turnaround time: P, : 30,P, : 3,P3: 6

- Average TT: (30 + 3 4+ 6)/3 = 13 - much less than 27
e Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT
e Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and 1/0

6/45

* Jobs contain I/O and computation

- Bursts of computation
- Then must wait for /0

* To maximize throughput, maximize
both CPU and I/0 device utilization
* How to do?

- Overlap computation from one job
with I/O from other jobs

- Means response time very important
for I/O-intensive jobs: /O device will
be idle until job gets small amount of
CPU to issue next /O request

7/45

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

e CPU-bound jobs will hold CPU until exit or I/O

(but 1/0 rare for CPU-bound thread)

30

6/45

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

8/45

- Long periods where no I/0 requests issued, and CPU held

- Result: poor I/0 device utilization

* Example: one CPU-bound job, many 1/O bound

- CPU-bound job runs (I/O devices idle)

- Eventually, CPU-bound job blocks

- 1/0-bound jobs run, but each quickly blocks on 1/0O

- CPU-bound job unblocks, runs again

- All1/0 requests complete, but CPU-bound job still hogs CPU
- 1/0 devices it idle since I/0-bound jobs can’t issue next requests

e Simple hack: run process whose 1/0 completed

- What is a potential problem?

9/45
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FCFS Convoy effect SJF Scheduling

* CPU-bound jobs will hold CPU until exit or I/O
(but 1/0 rare for CPU-bound thread)

Long periods where no I/0 requests issued, and CPU held
Result: poor I/0 device utilization

* Example: one CPU-bound job, many 1/O bound

CPU-bound job runs (1/0 devices idle)

Eventually, CPU-bound job blocks

1/0-bound jobs run, but each quickly blocks on 1/0
CPU-bound job unblocks, runs again

All1/0 requests complete, but CPU-bound job still hogs CPU

1/0 devices sit idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose 1/0 completed

What is a potential problem?
1/0-bound jobs can starve CPU-bound one

o Shortest-job first (SJF) attempts to minimize TT

Schedule the job whose next CPU burst is the shortest

Misnomer unless “job” = one CPU burst with no 1/0
[term coined for context where there is no 1/0, only compute]

* Two schemes:

- Preemptive - if a new process arrives with CPU burst length less

Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

SJF limitations SJF limitations

* Doesn’t always minimize average TT

Only minimizes waiting time
Example where turnaround time might be suboptimal?

¢ Can lead to unfairness or starvation

¢ In practice, can’t actually predict the future

* But can estimate CPU burst length based on past

Exponentially weighted average a good idea
t, actual length of process’s nth CPU burst
Tny1 €stimated length of proc’s (n + 1)t
Choose parameter a where0 < e <1

Let i =ath +(1—a)m

10/45
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o Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no 1/0
[term coined for context where there is no /0, only compute]
* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive - if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?

11/45

Process Arrival Time Burst Time

P 0 7
P, 2 4
Ps 4 1
Py 5 4

() I I I I .7 i; I I I 1:2 I I I 1(5
* Preemptive
l’l IDZ I>4 ’Jl
0 | 2 | 4 5 7 S 11 L 16

* Drawbacks?
12/45

e Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

¢ Can lead to unfairness or starvation

* In practice, can’t actually predict the future

¢ But can estimate CPU burst length based on past
- Exponentially weighted average a good idea
- t, actual length of process’s nt" CPU burst
- 7py1 estimated length of proc’s (n + 1)t
- Choose parameter a where 0 < a < 1
- Letmu=ath+(1—a)m

13/45



Exp. weighted average example Round robin (RR) scheduling

12

T 10

= DRRRAR P |

¢ Solution to fairness and starvation

- Preempt job after some time slice or quantum
- When preempted, move to back of FIFO queue

- (Many systems do some flavor of this)

¢ Advantages:

- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary

CPU burst (f)

"guess” (1)

* Varying sized jobs are good ...what about same-sized jobs?

10

e Assume 2 jobs of time=100 each:

P1

Py

P1

Py

P1

Py

P1

P>

0

e Even if context switches were free...
- What would average turnaround time be with RR?

1

2

3

4

5

- How does that compare to FCFS?

Context switch costs Context switch costs

* What is the cost of a context switch?

198 199 200

- Good for responsiveness if small number of jobs

¢ Disadvantages?

14/45 15/45

e Varying sized jobs are good ...what about same-sized jobs?

e Assume 2 jobs of time=100 each:

Py | Py | PPy | PPy --- [ PLIP,

0 1 2 3 4 5 6 198 199 200

¢ Even if context switches were free...

- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16/45 16/45

* What is the cost of a context switch?

e Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

P1 P>
EENEEEE EENEEEE
EEEEEEE IEEEEEN
EEENEEN | — EEENEEE
EEEEEEE EEEEEEDE
EEEEEEm IEEEEEN

CPU cache CPU cache
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* What is the cost of a context switch?

e Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

* Indirect costs: cache, buffer cache, & TLB misses

P1 P> P1

CPU cache CPU cache

Turnaround time vs. quantum Two-level scheduling

CPU cache

process | time
12.5 P, 6
12.0 A P, 3
. \ Py 1
£ 115 Py 7
§ 11.0 \
3 \'%
g 105
2
& 10.0
o
g 95
9.0

1 2 3 4 5 6 7
time quantum

L outine priority scheduling

Associate a numeric priority with each process

@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Virtual time case studies

17/45
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process time = 10 quantum context

switches

| e 0
0 10

| I i
0 6 10

ENENNEEENN 9
0 1 2 3 4 5 6 7 8 9 10

* How to pick quantum?

- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

e Typical values: 1-100 msec

18/45

* Under memory constraints, may need to swap process to disk

e Switching to swapped out process very expensive

- Swapped out process has most memory pages on disk
- Will have to fault them all in while running

- One disk access costs ~10ms. On 1GHz machine, 10ms = 10 million
cycles!

¢ Solution: Context-switch-cost aware scheduling

- Runin-core subset for “a while”
- Then swap some between disk and memory

* How to pick subset? How to define “a while”?

- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20/45

- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

Note SJF is priority scheduling where priority is the predicted
next CPU burst time

Starvation - low priority processes may never execute
Solution?

22/45



Priority scheduling Multilevel feeedback queues (BSD)
0...3

— tail

* Associate a numeric priority with each process ol 4t P — > tail
- E.g., smaller number means higher priority (Unix/BSD) ," 8,11 S — I — I — I —— tail

- Or smaller number means lower priority (Pintos)

* Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

]
[
[
1
1
1
1
1

124...127 —Il—— I — tail

* Note SJF is priority scheduling where priority is the predicted
next CPU burst time 0 Every runnable process o.n one of 32. run queues
i L. = -- Kernel runs process on highest-priority non-empty queue
e Starvation - low priority processes may never execute - Round-robins among processes on same queue
* Solution? ® Process priorities dynamically computed
- Aging: increase a process’s priority as it waits - Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

¢ ldea: Favor interactive jobs that use less CPU
23/45
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Process priority Sleeping process increases priority

® p_nice - user-settable weighting factor

® p_estcpu - per-process estimated CPU usage
- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

® p_estcpu not updated while asleep
- Instead p_s1ptime keeps count of sleep time

* When process becomes runnable

2 - load 1ptime
- 2-load \P-°P
prestepn ¢ (7 oy ) poosiom + pnice posepn (s ayy) -

- Load is sampled average of length of run queue plus short-term

sleep queue over last minute - Approximates decay ignoring nice and past loads

* Previous description based on [McKusick]! (The Design and

* Run queue determined by p_usrpri/4
osteou Implementation of the 4.4BSD Operating System)
p_usrpri < 50 + (%) +2-p_nice
(value clipped if over 127) —
See library.stanford.edu for off-campus access
25/45
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e With thread library, have two scheduling decisions:
- Local Scheduling - User-level thread library decides which user

* Same basic idea for second half of project 1
But 64 prioriti - proj (green) thread to put onto an available native (i.e., kernel) thread
i u priorities, no ; . - Global Scheduling - Kernel decides which native thread to run next
- Higher numbers mean higher priority
e Can expose to the user

- Okay to have only one run queue if you prefer

(less efficient, but we won’t deduct points for it) - E.g., pthread_attr_setscope allows two choices

* Have to negate priority equation: - PTHREAD_SCOPE_SYSTEM - thread scheduled like a process
(effectively one native thread bound to user thread - Will return
ENOTSUP in user-level pthreads implementation)
- PTHREAD_SCOPE_PROCESS - thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel

threads)

t
priority = 63 — (M) — 2 -nice

26/45 27/45



Thread dependencies Priority donation

* Say higher number = higher priority (like Pintos)

e Say H at high priority, L at low priority e Example 1: L (prio 2), M (prio 4), H (prio 8)
- Lacquires lock ¢. - Lholds lock ¢
- Scenario 1 (¢ a spinlock): H tries to acquire ¢, fails, spins. L never - Mwaitson ¢, L’s priority raised to L; = max(M,L) = 4
getstorun. - Then H waits on ¢, L’s priority raised to max(H,L;) = 8
- Scenario 2 (¢ a mutex): H tries to acquire ¢, fails, blocks. M enters
system at medium priority. L never gets to run. * Example 2: Same L, M, H as above
- Both scenarios are examples of priority inversion - L holds lock ¢, M holds lock ¢,

- Mwaits on ¢;, L’s priority now L; = 4 (as before)
- Then H waits on /5. M’s priority goes to M; = max(H,M) = 8,and L’s
priority raised to max(M;,L;) = 8

* Scheduling = deciding who should make progress

- Athread’s importance should increase with the importance of
those that depend on it

- Naive priority schemes violate this * Example 3: L (prio 2), My, ... Migg (all prio 4)

- Lhas¢,and My, ..., Mg all block on ¢. L’s priority is
max(L, Ml, “es 7M1000) =4,

28/45 29/45

* Must decide on more than which processes to run
- Must decide on which CPU to run which process
* Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too
o Affinity scheduling—try to keep process/thread on same CPU

@ Textbook scheduling

@ Priority scheduling

.

'
Py Py ! Py Py

P P2 o Py P2 [P
. . L]

©® Advanced scheduling issues [P Py P, . Py P, [P
1

2} _ Py ' Py Py _
'

cPU, CPU, CPU; ! cPU; CPU, CPU;
@ Virtual time case studies '

no affinity ' affinity

- But also prevent load imbalances

- Do cost-benefit analysis when deciding to migrate...
affinity can also be harmful, when tail latency is critical
30/45 31/45

Multiprocessor scheduling (cont) Real-time scheduling

* Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)

¢ Two categories:

- Even more important if threads communicate often, - Soft real time—miss deadline and audio playback will sound funny
otherwise must context switch to communicate - Hard real time—miss deadline and plane will crash
* Gang scheduling—schedule all CPUs synchronously e System must handle periodic and aperiodic events
- With synchronized quanta, easier to schedule related - E.g., processes A, B, C must be scheduled every 100, 200, 500 msec,
processes/threads together require 50, 30, 100 msec respectively
P4y , ; ,4 - Schedulable if Z % < 1(not counting switch time)
sz,l -Pu -Pm [Pos] ¢ Variety of scheduling strategies
= B B B - E.g., first deadline first
L L2 & L (works if schedulable, otherwise fails spectacularly)
CPU,; CPU, CPU3 CPU,
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* Many modern schedulers employ notion of virtual time

€ Textbook scheduling - ldea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

Forms the basis of the current linux scheduler, CFS
Case study: Borrowed Virtual Time (BVT) [Duda]

BVT runs process with lowest effective virtual time

- A; - actual virtual time consumed by process

- effective virtual time E; = A; — (warp; 7 W; : 0)

- Special warp factor allows borrowing against future CPU time
...hence name of algorithm

@ Priority scheduling

© Advanced scheduling issues

@ Virtual time case studies

34/45 35/45
Process weights Process weights
e Each process i’s faction of CPU determined by weight w; ¢ Each process i’s faction of CPU determined by weight w;
- ishould get w;/ > w; faction of CPU - ishould get w;/ >~ w; faction of CPU
J J
- So w; is real seconds per virtual second that process i has CPU - So w; is real seconds per virtual second that process i has CPU
* When i consumes t CPU time, track it: A; += t/w; * When i consumes t CPU time, track it: A; += t/w;
* Example: gcc (weight 2), bigsim (weight 1) * Example: gcc (weight 2), bigsim (weight 1)
- Assuming no |0, runs: gcc, gcc, bigsim, gcc, gee, bigsim, ... - Assuming no |0, runs: gcc, gcc, bigsim, gec, gee, bigsim, ...
- Lots of context switches, not so good for performance - Lots of context switches, not so good for performance
¢ Add in context switch allowance, C ¢ Add in context switch allowance, C
- Only switch fromitojif £; < E; — C/w; - Only switch fromitojif £; < E; — C/w;
- Cis wall-clock time (>> context switch cost), so must divide by w; - Ciswall-clock time (>> context switch cost), so must divide by w;
- Ignore Cif j just became runable...why? - Ignore Cifj just became runable to avoid affecting response time
36/45 36/45
BVT example Sleep/wakeup
180 T T T
gcc —A— T
160 - bigsim —e— : * Must lower priority (increase A;) after wakeup
140 1 - Otherwise process with very low A; would starve everyone
2 120 ¢ 1 * Bound lag with Scheduler Virtual Time (SVT)
‘(_*‘; 100 ¢ ] - SVTis minimum 4; for all runnable threads j
£ 80 1 - When waking i from voluntary sleep, set A; < max(A;, SVT)
> 60 * Note voluntary/involuntary sleep distinction
40 ¢ - E.g., Don’t reset A; to SVT after page fault
20 ¢ ] - Faulting thread needs a chance to catch up
T, - 4 ,
0 3 6 9 12 15 18 21 24 27 But do set A; «+— max(A;, SVT) after socket read
real time * Note: Even with SVT A; can never decrease
* gcc has weight 2, bigsim weight1,C =2,no01/0 - After short sleep, might have A; > SVT, so max(A;, SVT) = A;
- bigsim consumes virtual time at twice the rate of gcc - i never gets more than its fair share of CPU in long run

- Processes run for C time after lines cross before context switch
37/45 38/45



gcc wakes up after 1/0 Real-time threads

400 S gec —a— ' e Also want to support time-critical tasks
350 | bigsim | - E.g., mpeg player must run every 10 clock ticks
300 1 * Recall £; = A; — (warp; ? W; : 0)
250 - W;is warp factor - gives thread precedence
200 1 - Just give mpeg player i large W; factor
150 | h - Will get CPU whenever it is runable
100 | | - But long term CPU share won’t exceed w;/ >" w;
J
S0 ¢ * Note I, only matters when warp; is true
0 0 15 30 - Can set warp; with a syscall, or have it set in signal handler
, - Also gets cleared if i keeps using CPU for L; time
* gec’s A; gets reset to SVT on wakeup - L; limit gets reset every U; time
- Otherwise, would be at lower (blue) line and starve bigsim - Lj = 0 means no limit - okay for small W; value
39/45 40/45
Running warped Warped thread hogging CPU
120 e —— . o 120 p ——
100 | bigsim —e— 100  bigsim —e—
gof PO T go MPeO T ]
60 | 60 ’f/ 1
40 ¢ 40 + 7 =
20 ¢ 20 |
04 0 ¢
-20 -20
-40 40 L
-60 : . : : -60 . . . .
0 5 10 15 20 25 0 5 10 15 20 25
* mpeg player runs with —50 warp value ° mpeg goes into tight loop at time 5

- Always gets CPU when needed, never misses a frame  Exceeds L; at time 10, so warp, + false
1
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BVT example: Search engine Case study: SMART

° Common queries 150 times faster than uncommon

- Have 10-thread pool of threads to handle requests
- Assign W; value sufficient to process fast query (say 50)

* Key idea: Separate importance from urgency

- Figure out which processes are important enough to run
- Run whichever of these is most urgent
e Say 1slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

e Importance = (priority, BVFT) value tuple
- priority - parameter set by user or administrator (higher is better)
> Takes absolute priority over BVFT
- BVFT - Biased Virtual Finishing Time (lower is better)

* Say 1 slow query, but many fast queries > virtual time consumed + virtual length of next CPU burst
. . > le., virtual time at which quantum would end if process scheduled
- Atfirst, only fast queries run now

- But SVT is bounded by A; of slow query thread i

- Recall fast query thread j gets A; = max(A;, SVT) = A;; eventuall . .
SVT < 4 ar?d a Q’it later/{jg— w; ]>Ai- . SVT) =4 Y * Urgency = next deadline (sooner is more urgent)

- At that point thread i will run again, so no starvation

=~ Bias is like negative warp, see paper for details
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SMART algorithm

¢ If most important ready task (ready task with best value tuple)
is conventional (not real-time), run it

¢ Consider all real-time tasks with better value tuples than the
best ready conventional task

* For each such real-time task, starting from the best
value-tuple

- Can you run it without missing deadlines of more important tasks?
- If so, add to schedulable set

* Run task with earliest deadline in schedulable set
* Send signal to tasks that won’t meet their deadlines
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* Two new CAs: June Lee and Alice Liu
- More office hours

My office hours moved to 4pm today

Lab 1 due Wednesday 1:30pm (5pm if you attend lecture)

We give will give short extensions to groups that run into
trouble. But email us:

- How much is done and left?
- How much longer do you need?

Attend section Friday at 1:30pm to learn about lab 2

1/37

Want processes to co-exist

0x9000
oS

0x7000
gcc

0x4000

bochs/pintos
0x3000
emacs
0x0000

* Consider multiprogramming on physical memory
- What happens if pintos needs to expand?
- If emacs needs more memory than is on the machine?
- If pintos has an error and writes to address 0x7100?
- When does gcc have to know it will run at 0x4000?
- What if emacs isn’t using its memory?

3/37

Virtual memory goals Virtual memory goals
Is address
legal?

Is address
legal?

- Yes: phys.
s MMU addr 0x92408 | memory

virtual address
0x30408

* Give each program its own virtual address space
- At runtime, Memory-Management Unit relocates each load/store
- Application doesn’t see physical memory addresses

* Also enforce protection
- Prevent one app from messing with another’s memory

* And allow programs to see more memory than exists

- Somehow relocate some memory accesses to disk
5/37

e Came out of work in late 1960s
by Peter Denning (lower right)

- Established working set model
- Led directly to virtual memory

2/37

Issues in sharing physical memory

e Protection
- Abugin one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory
- Also prevent A from even observing B’s memory (ssh-agent)
* Transparency

- Aprocess shouldn’t require particular physical memory bits

- Yet processes often require large amounts of contiguous memory
(for stack, large data structures, etc.)

* Resource exhaustion

- Programmers typically assume machine has “enough” memory
- Sum of sizes of all processes often greater than physical memory

4/37

_No: to fault handler

virtual address -
0x30408 MMU memory

* Give each program its own virtual address space
- At runtime, Memory-Management Unit relocates each load/store
- Application doesn’t see physical memory addresses

¢ Also enforce protection
- Prevent one app from messing with another’s memory

¢ And allow programs to see more memory than exists

- Somehow relocate some memory accesses to disk
5/37



Virtual memory advantages Idea 1: no hardware, load-time linking

e Can re-locate program while running
- Run partially in memory, partially on disk
* Most of a process’s memory may be idle (80/20 rule).

physical
memory

idle
idle

- Write idle parts to disk until needed
- Let other processes use memory of idle part

- Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)

e Challenge: VM = extra layer, could be slow

6/37

Idea 1: no hardware, load-time linking

0x6000

static a.out

: -—-—————-—-————______-——""'——) call 0x5200
call 0x2200 :
0x1000 :

o Linker patches addresses of symbols like printf
¢ ldea: link when process executed, not at compile time
- Already have PIE (position-independent executable) for security
- Determine where process will reside in memory at launch
- Adjust all references within program (using addition)
* Problems?
- How to enforce protection?
- How to move once already in memory? (consider data pointers)

0x3000

0x4000

- What if no contiguous free region fits program? 7/37

0x6000

statica.out

: -—-————-——-———______—-—"”'——? call 0x2200
call 0x2200 :
0x1000 :

e Two special privileged registers: base and bound
* On each load/store/jump:
- Physical address = virtual address + base
- Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?
- Change base register
* What happens on context switch?

0x3000

0x4000

8/37

Idea 2: base + bound register

0x6000

statica.out

; -———-—————-————______—-——”"——» call 0x5200
call 0x2200 :
0x1000 :

e Linker patches addresses of symbols like printf

¢ ldea: link when process executed, not at compile time
- Already have PIE (position-independent executable) for security
- Determine where process will reside in memory at launch
- Adjust all references within program (using addition)

* Problems?

0x3000

0x4000

7/37

0x6000

statica.out

; -——-————-————______-—""'——» call 0x2200
call 0x2200 :
0x1000 :

e Two special privileged registers: base and bound
* On each load/store/jump:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?

0x3000

0x4000

* What happens on context switch?

8/37

Idea 2: base + bound register Idea 2: base + bound register
| kemel |

0x6000
statica.out

: -——-————-————______-——""'——§ call 0x2200
call 0x2200 5
0x1000 :

e Two special privileged registers: base and bound
* On each load/store/jump:
- Physical address = virtual address + base
- Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?
- Change base register
* What happens on context switch?
- Kernel must re-load base and bound registers

0x3000

0x4000

8/37



* Programs load/store to virtual addresses * Programs load/store to virtual addresses
e Actual memory uses physical addresses e Actual memory uses physical addresses
* VM Hardware is Memory Management Unit (MMU) * VM Hardware is Memory Management Unit (MMU)
virtual physical virtual physical
addresses addresses addresses addresses
CPU memory CPU / » memory
- Usually part of CPU core (one address space per hyperthread) - Usually part of CPU core (one address space per hyperthread)
- Configured through privileged instructions (e.g., load bound reg) - Configured through privileged instructions (e.g., load bound reg)
- Translates from virtual to physical addresses - Translates from virtual to physical addresses
- Gives per-process view of memory called address space - Gives per-process view of memory called address space
9/31 9/37
Base+bound trade-offs Base+bound trade-offs
¢ Advantages e Advantages
- Cheap in terms of hardware: only two registers - Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel - Cheapin terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme - Examples: Cray-1 used this scheme
* Disadvantages ¢ Disadvantages
. . . ) ) free space
- Growing a process is expensive or impossible
- No way to share code or data (E.g., two pintos2
copies of bochs, both running pintos)
e One solution: Multiple segments gcc

- E.g., separate code, stack, data segments
- Possibly multiple data segments

10/37 10/37

Segmentation Segmentation mechanics

physical ) fault
gee memory Virtual addr n e
text r/o 3 7 + 0x100Q
Seg 128
seg
e Let processes have many base/bound regs * Each process has a segment table
- Address space built from many segments e Each VAindicates a segment and offset:
- Can share/protect memory at segment granularity - Top bits of addr select segment, low bits select offset (PDP-10)

- Or segment selected by instruction or operand (means you need

* Must specify segment as part of virtual address wider “far” pointers to specify segment)

11/37 12/37



Segmentation example

Segmentation trade-offs

Seg base bounds rw
0 0x4000 O0x6ff 10 virtual physical « Advantages
1 0x0000 Ox4ff 11
2 0x3000 Oxfff 11 0x4000 0x4700 - Multiple segments per process gec
3 00 0x3000 0x4000 - Allows sharing! (how?)
- Don’t need entire process in memory
0x2000 0x3000
)
0x1500 * Disadvantages gec' where’ omacs?
- Requires translation hardware, which could limit performance
0x0700 - Segments not completely transparent to program (e.g., default
segment faster or uses shorter instruction)
0x0000 - n byte segment needs n contiguous bytes of physical memory

. - . - Makes fragmentation a real problem.
o 2-bit segment number (1st digit), 12 bit offset (last 3)

- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

13/37 14/37

Fragmentation

* Fragmentation —> Inability to use free memory

Alternatives to hardware MMU

¢ Language-level protection (JavaScript)
- Single address space for different modules
- Language enforces isolation
- Singularity OS does this with C# [Hunt]

* Software fault isolation

* Overtime:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste
(internal fragmentation)

External
29 = /fragme“tation - Instrument compiler output
emacs - Checks before every store operation prevents modules from
trashing each other
- Google’s now deprecated Native Client does this for x86 [Yee]
} Unused - Easier to do for virtual architecture, e.g., Wasm
allocated (“internal - Works really well on ARM64 [Yedidia’'24]
fragmentation”)

15/37 16/37

* Divide memory up into small, equal-size pages 7]

Pages
typical: 4k-8k

* Map virtual pages to physical pages
- Each process has separate mapping

gcc

<

"’,’,",,— internal frag
g

e Allow OS to gain control on certain operations
- Read-only pages trap to OS on write emacs
- Invalid pages trap to OS on read or write T
- 0S can change mapping and resume application

e Other features sometimes found:
- Hardware can set “accessed” and “dirty” bits
- Control page execute permission separately from read/write
- Control caching or memory consistency of page

¢ Eliminates external fragmentation
» Simplifies allocation, free, and backing storage (swap)
* Average internal fragmentation of .5 pages per “segment”
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Simplified allocation Paging data structures

* Pages are fixed size, e.g., 4 KiB
- Least significant 12 (log, 4 Ki) bits of address are page offset
- Most significant bits are page number
* Each process has a page table
- Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
- Also includes bits for protection, validity, etc.

° On memory access: Translate VPN to PPN,
then add offset
Virtual addr mem

| 3 | 1<<12)|128 0x1000

T
VP}\] page fable 128

¢ Allocate any physical page to any process Proil VPN IPPN seg
? PPN

>
*"invalid”
I N I P

19/37 20/37

Example: Paging on PDP-11 x86 Paging

¢ Paging enabled by bits in a control register (%cr0)
- Only privileged OS code can manipulate control registers

physical

cc
€ memory

emacs

()

e Can store idle virtual pages on disk

¢ 64 KiB virtual memory, 8 KiB pages Normally 4 KiB pages

- Separate address space for instructions & data

%cr3: points to physical address of 4 KiB page directory

- l.e., can’t read your own instructions with a load - Seepagedir_activate in Pintos

* Entire page table stored in registers ¢ Page directory: 1024 PDEs (page directory entries)
- 8Instruction page translation registers - Each contains physical address of a page table
- 8 Data page translations * Page table: 1024 PTEs (page table entries)

* Swap 16 machine registers on each context switch - Each contains physical address of virtual 4K page

- Page table covers 4 MiB of Virtual mem

See old intel manual for simplest explanation
- Also volume 2 of AMD64 Architecture docs

- Also volume 3A of latest intel 64 architecture manual
21/37 22/37

x86 page translation x86 page directory entry

Linear Address

31 22 21 12 11 0 i
| Directoryl Table | Offset | Page-Directory Entry (4-KByte Page Table)
31 1211 9876543210
12 4- plpulr
4-KByte Page Page-Table Base Address Avail |G g ofA|C|W[/|/|P
D|T|S [w
A10 10 Page Table Physical Address I
Page Directory Available for system programmer’s use

Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
20 Accessed
»| Directory Entry > Cache disabled
> Write-through

Y

Page-Table Entry [

V s User/Supervisor

1024 PDE x 1024 PTE = 220 P,
% CR3 (PDBR) 0 <10 ages Read/W rite

Present

*32 bits aligned onto a 4-KByte boundary
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x86 page table entry x86 hardware segmentation

* x86 architecture also supports segmentation

Page-Table Entry (4-KByte Page) - Segment register base + pointer val = linear address
31 1211 9876543210 - Page translation happens on linear addresses
_ P plelulr * Two levels of protection and translation check
Page Base Address Avall 1@ # plA 8 \4’ é \fv P - Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user
° i ion?

Available for system programmer’s use _I | Why do you want both paging and segmentation?
Global Page
Page Table Attribute Index
Dirty
Accessed

Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

25/37 26/37

x86 hardware segmentation Making paging fast

* x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses
Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user
Why do you want both paging and segmentation? - Called a translation lookaside buffer or TLB
et - Typical: 64-2k entries, 4-way to fully associative, 95% hit rate
Short answer: You don’t - just adds overhead - Modern CPUs add second-level TLB with ~1,024+ entries; often
- Most OSes use “flat mode” - set base = 0, bounds = Oxffffffff ? ’

. ; . separate instruction and data TLBs
in all segment registers, then forget about it Each TLB entry m VPN —s PPN + brotection information
- x86-64 architecture removes much segmentation support ac entry mapsa - protectio ormatio

* x86 PTs require 3 memory references per load/store
- Look up page table address in page directory
- Look up physical page number (PPN) in page table
- Actually access physical page corresponding to virtual address

* For speed, CPU caches recently used translations

* Long answer: Has some fringe/incidental uses * On each memory reference
- Keep pointer to thread-local storage w/o wasting normal register - Check TLB, if entry present get physical address fast
- 32-bit VMware runs guest OS in CPL 1 to trap stack faults - If not, walk page tables, insert in TLB for next time
- OpenBSD used CS limit for WAX when no PTE NX bit (Must evict some entry)
26/37 27/37

TLB details x86 Paging Extensions

* TLB operates at CPU pipeline speed — small, fast

e Complication: what to do when switching address space? * PSE: Page size extensions

- Flush TLB on context switch (e.g., old x86) - Setting bit 7 in PDE makes a 4 MiB translation (no PT)
- Tageach entry with associated process’s ID (e.g., MIPS)

* In general, OS must manually keep TLB valid
- Changing page table in memory won’t affect cached TLB entry

* PAE Page address extensions

- Newer 64-bit PTE format allows 36+ bits of physical address
- Page tables, directories have only 512 entries

¢ E.g., on x86 must use invipg instruction - Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
- Invalidates a page translation in TLB - PDE bit 7 allows 2 MiB translation
- Note: very expensive instruction (100-200 cycles) * Long mode PAE (x86-64)

- Must execute after changing a possibly used page table entry
- Otherwise, hardware will miss page table change
More Complex on a multiprocessor (TLB shootdown)
- Requires sending an interprocessor interrupt (IPI)
- Remote processor must execute invlpg instruction

- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren’t all 64 bits of VA usable?
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x86 long mode paging Where does the OS live?

Virtual Address

63 48 47 3938 30 29 2120 1211 0
. Page-Map Page Directory- | Page Director: Page-Table Physical-
Sign Extend Level-4 offset Pfinter Offse)t, ® Offset Y (g)ffset P. y(l)ff t
(PML4) sef age Offse
9 9 9 9 12
Page-
Page-Map Directory _Page- Page 4—Kb_yte
Level-4 Pointer Directory & Physical
Table Table Table Table Page
PTE >
52
- i o Physical
PMLE 2 B Ad);iress
—» PDE
51 12
| Page-Map L4 Base Addr | ' CR3
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Pintos memory layout Very different MMU: MIPS

< Oxffffffff
Kernel/
Pseudo-physical memory

~—— 0xc0000000

User stack (PHYS_BASE)

' 1

) )
BSS / Heap
Data segment

Code segment

~—— 0x08048000

Invalid virtual addresses

~— 0x00000000
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DEC Alpha MMU PAL code interface details

e Firmware managed TLB
- Like MIPS, TLB misses handled by software

- Unlike MIPS, TLB miss routines ship with machine in ROM
(but copied to main memory on boot—so can be overwritten)

- Firmware known as “PAL code” (privileged architecture library)
* Hardware capabilities

- 8KiB, 64 KiB, 512 KiB, 4 MiB pages all available

- TLB supports 128 instruction/128 data entries of any size
* Various other events vector directly to PAL code

- call_pal instruction, TLB miss/fault, FP disabled
* PAL code runs in special privileged processor mode

- Interrupts always disabled
- Have access to special instructions and registers

34/37

¢ Inits own address space?

- Can’t do this on most hardware (e.g., syscall instruction won’t
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers
¢ Soin the same address space as process
- Use protection bits to prohibit user code from writing kernel
e Typically all kernel text, most data at same VA in every address
space
- On x86, must manually set up page tables for this
- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory
- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space
- Typically kernel goes in high memory; with signed numbers, can
mean small negative addresses (small linker relocations)

31/37

e Hardware checks TLB on application load/store
- References to addresses not in TLB trap to kernel
e Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global
e Kernelitself unpaged

- All of physical memory contiguously mapped in high VM
(hardwired in CPU, not just by convention as with Pintos)

- Kernel uses these pseudo-physical addresses

e User TLB fault hander very efficient

- Two hardware registers reserved for it
- utlb miss handler can itself fault—allow paged page tables

e OSis free to choose page table format!

33/37

e Examples of Digital Unix PALcode entry functions

- callsys/retsys - make, return from system call
- swpctx - change address spaces

- wrvptptr - write virtual page table pointer

- tbi-TLBinvalidate

¢ Some fields in PALcode page table entries

- GH - 2-bit granularity hint — 2" pages have same translation
- ASM - address space match — mapping applies in all processes
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Example: Paging to disk Paging in day-to-day use

® gcc needs a new page of memory
® OSre-claims anidle page from emacs

Demand paging
¢ If pageis clean (i.e., also stored on disk):

- E.g., page of text from emacs binary on disk

- Can always re-read same page from binary

- So okay to discard contents now & give page to gcc

Growing the stack

BSS page allocation
Shared text
Shared libraries

If page is dirty (meaning memory is only copy)
- Must write page to disk first before giving to gcc

Shared memory

Either way: e Copy-on-write (fork, mmap, etc.)
- Mark page invalid in emacs
- emacs Will fault on next access to virtual page

- On fault, OS reads page data back from disk into new page, maps
new page into emacs, resumes executing

Q: Which pages should have global bit set on x86?
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6. Virtual memory OS



@ Paging
@ Eviction policies
o Attend section Friday 1:30pm, NVIDIA auditorium © Thrashing
@ Details of paging
© The user-level perspective

@ Case study: 4.4 BSD

1/48 2/48

page is on

backing store
/\
\\_,/ "
(]
operating &
system Q
® S
reference trap ©
—
o
*
load M
virtual address
restart page table
instruction .
poeya— ¢ Disk much, much slower than memory
® @ - Goal: run at memory speed, not disk speed
reset page _bring in
table He * 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
e - Keep the cold 80% on disk
e Use disk to simulate larger virtual than physical mem
3/48 4/48

Working set model Working set model

(%] wv
(] (]
A A
(V] (V]
(9] (]
o o
© ©
kS k]
H*+ *
et w1 MR o oo A )
virtual address virtual address

¢ Disk much, much slower than memory ¢ Disk much, much slower than memory

- Goal: run at memory speed, not disk speed - Goal: run at memory speed, not disk speed
* 80/20 rule: 20% of memory gets 80% of memory accesses © 80/20 rule: 20% of memory gets 80% of memory accesses

—> Keep the hot 20% in memory - Keep the hot 20% in memory
- Keep the cold 80% on disk — Keep the cold 80% on disk
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Paging challenges Re-starting instructions

* How to resume a process after a fault?

- Need to save state and resume

- Process may have been in the middle of an instruction!
* What to fetch from disk?

- Just needed page or more?
* What to eject?

- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?

* Bring in page that caused page fault

¢ Pre-fetch surrounding pages?

- Reading two disk blocks approximately as fast as reading one

- As long as no track/head switch, seek time dominates

- If application exhibits spacial locality, then big win to store and
read multiple contiguous pages

* Also pre-zero unused pages in idle loop

- Need 0-filled pages for stack, heap, anonymously mmapped
memory

- Zeroing them only on demand is slower

- Hence, many OSes zero freed pages while CPU is idle

* How should OS make use of “large” mappings
- x86 has 2/4MiB pages that might be useful
- Alpha has even more choices: 8KiB, 64KiB, 512KiB, 4MiB
* Sometimes more pages in L2 cache than TLB entries
- Don’t want costly TLB misses going to main memory
- Try cpuid tool to find CPU’s TLB configuration on linux...
then compare to cache size reported by [scpu
¢ Or have two-level TLBs
- Want to maximize hit rate in faster L1 TLB

® OS can transparently support superpages [Navarro]
- “Reserve” appropriate physical pages if possible
- Promote contiguous pages to superpages
- Does complicate evicting (esp. dirty pages) - demote

5/48
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¢ Hardware must allow resuming after a fault

¢ Hardware provides kernel with information about page fault

- Faulting virtual address (In %cr2 reg on x86—may see it if you
modify Pintos page_fault and use fault_addr)

- Address of instruction that caused fault
- Was the access a read or write? Was it an instruction fetch?
Was it caused by user access to kernel-only memory?

* Observation: Idempotent instructions are easy to restart

- E.g., simple load or store instruction can be restarted

- Just re-execute any instruction that only accesses one address
e Complex instructions must be re-started, too

- E.g.,x86 move string instructions

- Specify src, dst, countin %esi, %edi, %ecx registers

- On fault, registers adjusted to resume where move left off

6/48

* May need to eject some pages
- More on eviction policy in two slides

* May also have a choice of physical pages

* Direct-mapped physical caches (older machines)

- Physical address A conflicts with kC + A
(where k is any integer, C is cache size)

- Virtual — Physical mapping can affect performance
- Applications can conflict with each other or themselves

- Scientific applications benefit if consecutive virtual pages do not
conflictin the cache

- Many other applications do better with random mapping
» Set associative caches (more common)
- Multiple (e.g., 2-4) possible slots for each physical address
- Historically n-way associative cache chooses line by A mod (C/n)
- These days: CPUs use more sophisticated mapping [Hund]

8/48

@ Paging

@ Eviction policies

© Thrashing

@ Details of paging

© The user-level perspective

@ Case study: 4.4 BSD
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Straw man: FIFO eviction Straw man: FIFO eviction

Evict oldest fetched page in system

* Evict oldest fetched page in system
* Example—reference string 1,2,3,4,1,2,5,1,2,3,4,5
* 3 physical pages: 9 page faults

9 page faults

Belady’s Anomaly Optimal page replacement

16
14
12

number of page faults
>

1 2 3 4 5 6 7
number of frames

* More physical memory doesn’t always mean fewer faults

Optimal page replacement LRU page replacement

* What is optimal (if you knew the future)?
- Replace page that will not be used for longest period of time

* Example—reference string 1,2,3,4,1,2,5,1,2,3,4,5
* With 4 physical pages:

4
6 page faults

5

1
2]
3]
4

* What do we do when an OS can’t predict the future?

11/48

12/48
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Example—reference string 1, 2, 3,4,1,2,5,1,2,3,4,5

¢ 3 physical pages: 9 page faults

5 10 page faults

4 physical pages: 10 page faults

11/48

e What is optimal (if you knew the future)?

13/48

* Approximate optimal with least recently used
- Because past often predicts the future

e Example—reference string 1,2,3,4,1,2,5,1,2,3,4,5

1
2
3]
4

With 4 physical pages: 8 page faults

5

5 4
3

Problem 1: Can be pessimal - example?

Problem 2: How to implement?

14/48



LRU page replacement Straw man LRU implementations

* Approximate optimal with least recently used
- Because past often predicts the future « Stamp PTEs with timer value
Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5 - E.g., CPU has cycle counter
With 4 physical pages: 8 page faults - Automatically writes value to PTE on each page access

- Scan page table to find oldest counter value = LRU page
5 )
- Problem: Would double memory traffic!

e Keep doubly-linked list of pages
5 4 - On access remove page, place at tail of list
- Problem: again, very expensive
* What to do?

Problem 1: Can be pessimal - example? - Just approximate LRU, don’t try to do it exactly
- Looping over memory (then want MRU eviction)

BEER

3

Problem 2: How to implement?
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Clock algorithm Clock algorithm
» Use accessed bit supported by most hardware * Use accessed bit supported by most hardware
- E.g.,x86 will write 1 to A bit in PTE on first access - E.g., x86 will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same - Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages Do FIFO but skip accessed pages

°
>
Il
>
Il
o
>
Il
—
o o
>
Il
o
>
Il
o
>
Il
—

* Keep pages in circular FIFO list Keep pages in circular FIFO list

* Scan: A=0 A=0 * Scan: A=0 A=0

- page’s Abit=1, set to 0 & skip 3 \ 3 - page’s Abit=1, set to 0 & skip 3 3

- elseif A=0, evict A’ a5 - elseif A=0, evict < a=0
* A.k.a. second-chance replacement 4 -1 A=1 ¢ A.k.a. second-chance replacement 4 — 1 A=

A=1 A=0 A=1 A=0
A=0 A=0
16/48 16/48
Clock algorithm Clock algorithm (continued)
* Use accessed bit supported by most hardware ﬁ; %4 0
T o ) * Large memory may be a problem
- E.g.,x86 will write 1 to A bit in PTE on first access Most ‘ dinlonginterval A=1 A—1
- Software managed TLBs like MIPS can do the same - Mostpagesreferenced in fong interva
. * Add a second clock hand A=0 A=0
* Do FIFO but skip accessed pages M - Two hands move in lockstep
* Keep pages in circular FIFO list A=0 A=1 - Leading hand clears A bits A=1 A=1
e Scan: A=0 A=0 - Trailing hand evicts pages with A=0 A1 A=0
A=0

- page’sAbit=1,settoO&skip = Ao * Can also take advantage of hardware Dirty bit

- elseif A=0, evict - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
* A.k.a. second-chance replacement 4 — 1 A=1 (Accessed, Clean), or (Accessed, Dirty)

A A - Consider clean pages for eviction before dirty
T A=0" " * Or use n-bit accessed count instead just A bit

- On sweep: count = (A << (n — 1)) | (count >> 1)

- Evict page with lowest count
16/48 17/48



Clock algorithm (continued) Clock algorithm (continued)
a=1""%-0 mA—o
* Large memory may be a problem - B * Large memory may be a problem - B

- Most pages referenced in longinterval A=1 '\/‘A » - Most pages referenced in long interval A =1 A=0

* Add a second clock hand A=0 A=0 * Add a second clock hand A=0 A=0
- Two hands move in lockstep - Two hands move in lockstep
- Leading hand clears A bits A=1 A=1 - Leading hand clears A bits A=1 A=1
- Trailing hand evicts pages with A=0 A1 A=0 - Trailing hand evicts pages with A=0 A—1 A=0
A=0 A=0
* Can also take advantage of hardware Dirty bit e Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), - Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty) (Accessed, Clean), or (Accessed, Dirty)
- Consider clean pages for eviction before dirty - Consider clean pages for eviction before dirty
* Oruse n-bit accessed count instead just A bit * Or use n-bit accessed count instead just A bit
- On sweep: count = (A << (n — 1)) | (count >> 1) - Onsweep: count = (A << (n — 1)) | (count >> 1)
- Evict page with lowest count /e - Evict page with lowest count e
Other replacement algorithms Naive paging
frame  valid—invalid bit
N
* Random eviction A
- Dirt simple to implement swap out
. . . change victim
- Not overly horrible (avoids Belady & pathological cases) B to invalid @ page ,D
® LFU (least frequently used) eviction Y ® c/
[
- Instead of just A bit, count # times each page accessed reset page veim \
- Least frequently accessed must not be very useful page table able for ®
(or maybe was just brought in and is about to be used) = dzvsvié:sd \1:'
- Decay usage counts over time (for pages that fall out of usage) page in
* MFU (most frequently used) algorithm - >
- Because page with the smallest count was probably just brought in
and has yet to be used

. physical
¢ Neither LFU nor MFU used very commonly memory

¢ Naive page replacement: 2 disk I/Os per page fault
18/48 19/48

e Allocation can be global or local

¢ ldea: reduce # of 1/Os on the critical path ¢ Global allocation doesn’t consider page ownership

- E.g., with LRU, evict least recently used page of any proc

* Keep pool of free page frames
- Works well if P; needs 20% of memory and P, needs 70%:

- On fault, still select victim page to evict

- But read fetched page into already free page | Py | | P2 |
- Can resume execution while writing out victim page - Doesn’t protect you from memory pigs
- Then add victim page to free pool (imagine P, keeps looping through array that is size of mem)
* Can also yank pages back from free pool * Local allocation isolates processes (or users)
- Contains only clean pages, but may still have data - Separately determine how much memory each process should

have

- Then use LRU/clock/etc. to determine which pages to evict within
each process

- If page fault on page still in free pool, recycle
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@ Paging
* Processes require more memory than system has

@ Eviction policies - Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out

- Processes will spend all of their time blocked, waiting for pages to

e Thrashing be fetched from disk
. . - Disk at 100% utilization, but system not getting much useful work
@ Details of paging dlone o utitization, butsy getting much usetutw

* What we wanted: virtual memory the size of disk with access

© The user-level perspective time the speed of physical memory

@ Case study: 4.4 BSD * What we got: memory with access time of disk

22/48 23/48

Reasons for thrashing Multiprogramming & Thrashing

* Access pattern has no temporal locality (past # future)

MWWMM‘M“MMM“ML (80/20 rule has broken down) |
thrashing

* Hot memory does not fit in physical memory
| 2 |

memory

CPU utilization

* Each process fits individually, but too many for system

v

memory

degree of multiprogramming

- At least this case is possible to address « Must shed load when thrashing

24/48 25/48

Transitions

3
?

e Approach 1: working set
- Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

- Or: how much memory does the process need in order to make
reasonable progress (its working set)?

- Only run processes whose memory requirements can be satisfied

working set size

* Approach 2: page fault frequency
- Thrashing viewed as poor ratio of fetch to work
- PFF = page faults / instructions executed

- If PFF rises above threshold, process needs more memory. .
Not enough memory on the system? Swap out. * Working set changes across phases

If PFF sinks below threshold, memory can be taken away - Baloons during phase transitions

Vv

time
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Calculating the working set Two-level scheduler

¢ Divide processes into active & inactive

- Active - means working set resident in memory
- Inactive - working set intentionally not loaded

e Working set: all pages that process will access in next T time

- Can’t calculate without predicting future X . .
¢ Balance set: union of all active working sets

* Approximate by assuming past predicts future - Must keep balance set smaller than physical memory

- So working set ~ pages accessed in last T time
e Use long-term scheduler [recall from lecture 4]

- Moves procs active — inactive until balance set small enough
Periodically scan all resident pages in system - Periodically allows inactive to become active
- Abit set? Clear it and clear the page’sidle time - As working set changes, must update balance set
- Abit clear? Add CPU consumed since last scan to idle time
- Working set is pages with idle time < T

Keep idle time for each page

e Complications
- How to chose idle time threshold T?
- How to pick processes for active set
- How to count shared memory (e.g., libc.so)
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© Paging * What happens to available memory?
- Some physical memory tied up by kernel VM structures
@ Eviction policies * What happens to user/kernel crossings?

- More crossings into kernel
- Pointers in syscall arguments must be checked
(can’t just kill process if page not present—might need to page in)

* What happens to IPC?
- Must change hardware address space
- Increases TLB misses

. - Context switch flushes TLB entirely on old x86 machines
© Case study: 4.4 BSD (But not on MIPS...Why?)

© Thrashing
@ Details of paging

© The user-level perspective
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Some complications of paging 64-bit address spaces

* Recall x86-64 only has 48-bit virtual address space

* What happens to available memory?
- Some physical memory tied up by kernel VM structures * What if you want a 64-bit virtual address space?

* What happens to user/kernel crossings? - Straight hierarchical page tables not efficient

L - But software TLBs (like MIPS) allow other possibilities
- More crossings into kernel

- Pointers in syscall arguments must be checked * Solution 1: Hashed page tables
(can’t just kill process if page not present—might need to page in) - Store Virtual — Physical translations in hash table
e What happens to IPC? - Table size proportional to physical memory
- Must change hardware address space - Clustering makes this more efficient [Talluri]
- Increases TLB misses e Solution 2: Guarded page tables [Liedtke]
- Context switch flushes TLB entirely on old x86 machines - Omit intermediary tables with only one entry

(But not on MIPS...Why? MIPS tags TLB entries with PID) - Add predicate in high level tables, stating the only virtual address

range mapped underneath + # bits to skip
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@ Paging stale
@ Eviction policies 1
breakpoint
© Thrashing heap
uninitialized data (bss)
read-only data
© The user-level perspective Y
code (text)
O Casestudy: 4.4 BSD » Dynamically allocated memory goes in heap

* Top of heap called breakpoint
- Addresses between breakpoint and stack all invalid
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Early VM system calls Memory mapped files
stack
* OS keeps “Breakpoint” - top of heap d
- Memory regions between breakpoint & stack fault on access (_/_h: p;rg?gﬁ E €
® char *brk (const char *addr);
heap

- Set and return new value of breakpoint

o char *sbrk (int incr); uninitialized data (bss)

- Increment value of the breakpoint & return old value
read-only data

Can implementmallocin terms of sbrk
- But hard to “give back” physical memory to system code (text)

e Other memory objects between heap and stack
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mmap system call More VM system calls

® void *mmap (void *addr, size_t len, int prot,
int flags, int fd, off_t offset)

® int msync(void *addr, size_t len, int flags);

- Map file specified by £d at virtual address addr - Flush changes of mmapped file to backing store

- If addr is NULL, let kernel choose the address ® int munmap(void *addr, size_t len)
e prot - protection of region - Removes memory-mapped object
- OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE ® int mprotect(void *addr, size_t len, int prot)
° flags - Changes protection on pages to bitwise or of some PROT_...values
- MAP_ANON - anonymous memory (£d should be -1) ® int mincore(void *addr, size_t lemn, char *vec)
- MAP_PRIVATE - modifications are private - Returns in vec which pages present

- MAP_SHARED - modifications seen by everyone
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Exposing page faults Example: OpenBSD/i386 siginfo

struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds;
int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;
int sc_edx; int sc_ecx; int sc_eax;

struct sigaction {

union { /* signal handler */
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, void *);
3
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

}’

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */

. . . . . . . in mask; * signal mask to restore *
int sigaction (int sig, const struct sigaction *act, t sc_mas /% sign as s e */

struct sigaction *oact) int sc_trapno;

- b
* Can specify function to run on SIGSEGV ) nt sc_err;
(Unix signal raised on invalid memory access) ’

e Linux uses ucontext_t - same idea, just uses nested structures
that won’t all fit on one slide
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* Combination of mprotect/sigaction very powerful © Paging

- Canuse OS VM tricks in user-level programs [Appel]

- E.g., fault, unprotect page, return from signal handler @ Eviction policies

* Technique used in object-oriented databases © Thrashing
- Bring in objects on demand
- Keep track of which objects may be dirty @ Details of paging
- Manage memory as a cache for much larger object DB
« Other interesting applications © The user-level perspective

- Useful for some garbage collection algorithms

- Snapshot processes (copy on write) O Casestudy: 4.4 BSD
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4.4 BSD VM system [McKusick]? 4.4 BSD VM data structures

* Each process has a vmspace structure containing

shadow
- vm_map - machine-independent virtual address space vm_map ’ V’"—’”al’—e"”>’| ™ object ™ vnode/
- vm_pmap - machine-dependent data structures ~ r---- Y ﬁ object
- statistics - e.g., for syscalls like getrusage () b pm_map_eni)
* vm_map is a linked list of vm_map_entry structs stats !
- vm_map_entry covers contiguous virtual memory vmspace m, mam_’ Sgﬁf&? - V‘:,Jde/
: . _map_ .
- points to vm_object struct o
° vm_object is source of data - ma‘; p vm_page node/
- e.g. vnode object for memory mapped file object
- points to list of vm_page structs (one per mapped page)

- shadow objects point to other objects for copy on write

Use link on searchworks page for access
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° vm_map_entry structs for a process

* Pmap layer holds architecture-specific VM code /o text segment —» file object

* VM layer invokes pmap layer - r/w data segment — shadow object — file object
- On page faults to install mappings - r/w stack — anonymous object
- To protect or unmap pages * New vm_map_entry objects after a fork:

- Toaskfor dirty/accessed bits - Share text segment directly (read-only)

* Pmap layer is lazy and can discard mappings - Share data through two new shadow objects
- No need to notify VM layer (must share pre-fork but not post-fork changes)
- Process will fault and VM layer must reinstall mapping - Share stack through two new shadow objects

* Pmap handles restrictions imposed by cache * Must discard/collapse superfluous shadows

- E.g., when child process exits

45/48 46/48

What happens on a fault? Paging in day-to-day use

* Demand paging

* Traverse vm_map_entry list to get appropriate entry - Read pages from vm_object of executable file
- No entry? Protection violation? Send process a SIGSEGV ¢ Copy-on-write (fork, mmap, etc.)
* Traverse list of [shadow] objects - Use shadow objects

Growing the stack, BSS page allocation
- Abit like copy-on-write for /dev/zero
- Can have a single read-only zero page for reading
- Special-case write handling with pre-zeroed pages

* For each object, traverse vm_page structs

* Found a vm_page for this object?
- If first vm_object in chain, map page
- If read fault, install page read only
- Else if write fault, install copy of page

Shared text, shared libraries

- Share vm_object (shadow will be empty where read-only)
Shared memory

- Two processes mmap same file, have same vm_object (no shadow)

* Else get page from object
- Page in from file, zero-fill new page, etc.

47/48 48/48



7. Synchronization 1



@ Cache coherence - the hardware view
@ Synchronization and memory consistency review
© C11 Atomics

@ Avoiding locks

1/47

Multicore cache coherence MESI coherence protocol

* Performance requires caches

- Divided into chuncks of bytes called lines (e.g., 64 bytes)

- Caches create an opportunity for cores to disagree about memory
* Bus-based approaches

- “Snoopy” protocols, each CPU listens to memory bus
- Use write-through and invalidate when you see a write bits
- Bus-based schemes limit scalability

* Modern CPUs use networks (e.g., AMD infinity fabric, intel UPI,
CXL [between CPUs and devices])

- CPUs pass each other messages about cache lines

3/47

Important memory system properties

e Coherence - concerns accesses to a single memory location

- There is a total order on all updates
- Must obey program order if access from only one CPU
- There is bounded latency before everyone sees a write

e Consistency - concerns ordering across memory locations

- Even with coherence, different CPUs can see the same write
happen at different times

- Sequential consistency is what matches our intuition
(As if operations from all CPUs interleaved on one CPU)

- Many architectures offer weaker consistency

- Yet well-defined weaker consistency can still be sufficient to
implement thread API contract from concurrency lecture
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* Modified
- Exactly one cache has a valid copy
- That copy is dirty (needs to be written back to memory)
- Must invalidate all copies in other caches before entering this state
e Exclusive
- Same as Modified except the cache copy is clean
Shared
- One or more caches and memory have a valid copy

Invalid
- Doesn’t contain any data
owned (for enhanced “MOESI” protocol)
- Cached copy may be dirty (like Modified state)
- But have to broadcast modifications (sort of like Shared state)
- Can have one owned + multiple shared copies of cache line
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e Actions performed by CPU core
- Read
- Write
- Evict (modified/owned? must write back)

* Transactions on bus (or interconnect)

- Read: without intent to modify, data can come from memory or
another cache

- Read-exclusive: with intent to modify, must invalidate all other
cache copies

- Writeback: contents put on bus and memory is updated
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¢ Old machines used dance hall architectures
- Any CPU can “dance with” any memory equally

¢ An alternative: Non-Uniform Memory Access (NUMA)
- Each CPU has fast access to some “close” memory
- Slower to access memory that is farther away
- Use a directory to keep track of who is caching what
e Originally for esoteric machines with many CPUs
- But AMD and then intel integrated memory controller into CPU

- Faster to access memory controlled by the local socket
(or even local die in a multi-chip module)

¢ cc-NUMA = cache-coherent NUMA
- Rarely see non-cache-coherent NUMA (BBN Butterfly 1, Cray T3D)
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Real World Coherence Costs NUMA and spinlocks

* See [David] for a great reference. Xeon results:
- 3cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle local RAM

e If another core in same socket holds line in modified state:
- load: 109 cycles (LLC + 65)
- store: 115 cycles (LLC + 71)
- atomic CAS: 120 cycles (LLC + 76)
» If a core in a different socket holds line in modified state:
- NUMA load: 289 cycles
- NUMA store: 320 cycles
- NUMA atomic CAS: 324 cycles
* Butonly a partial picture
- Could be faster because of out-of-order execution
- Could be slower if interconnect contention or multiple hops
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@ Cache coherence - the hardware view
@ Synchronization and memory consistency review
© C11 Atomics

@ Avoiding locks
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mutex_t m;

lock(&m) ;
cnt = cnt + 1; /* critical section */
unlock(&m) ;
* Only one thread can hold a mutex at a time
- Makes critical section atomic
¢ Recall thread API contract

- All access to global data must be protected by a mutex
- Global =two or more threads touch data and at least one writes

* Means must map each piece of global data to one mutex
- Never touch the data unless you locked that mutex

¢ But many ways to map data to mutexes
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e Test-and-set spinlock has several advantages
- Simple to implement and understand
- One memory location for arbitrarily many CPUs
¢ But also has disadvantages
- Lots of traffic over memory interconnect (especially w. > 1 spinner)
- Not necessarily fair (lacks bounded waiting)
- Even less fair on a NUMA machine

¢ Idea 1: Avoid spinlocks altogether (today)

¢ Idea 2: Reduce interconnect traffic with better spinlocks (next
lecture)
- Design lock that spins only on local memory
- Also gives better fairness
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T(n) = T(1) (B + %(1 - B))

* Expected speedup limited when only part of a task is sped up
- T(n): the time it takes n CPU cores to complete the task
- B: the fraction of the job that must be serial

¢ Even with massive multiprocessors, Jim = B-T(1)
(e8]

\\\‘“—‘—‘_A —

123 456 7 8 9 1011 12 13 14 15 16
# of CPUs

time

- Places an ultimate limit on parallel speedup

* Problem: synchronization increases serial section size
10/47

¢ Consider two lookup implementations for global hash table:
struct list *hash_tbl[1021];

coarse-grained locking
mutex_t m;

mutex_lock (&m) ;

struct list_elem *pos = list_begin (hash_tbl [hash(key)]);
/* ... walk list and find entry ... */

mutex_unlock(&m) ;

fine-grained locking
mutex_t bucket_lock[1021];

int index = hash(key);
mutex_lock(&bucket_lock[index]);

struct list_elem *pos = list_begin (hash_tbl[index]) ;
/* ... walk list and find entry ... */

mutex_unlock (&bucket_lock[index]) ;

* Which implementation is better? Va7



Locking granularity (continued) Locking granularity (continued)

Readers-writers problem Implementing shared locks

Implementing shared locks (continued) Implementing shared locks (continued)

v

}

v

}

* Fine-grained locking admits more parallelism

- E.g.,imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets

- So fine-grained locking should allow better speedup
* When might coarse-grained locking be better?

Recall amutex allows access in only one thread
But a data race occurs only if

- Multiple threads access the same data, and
- At least one of the accesses is a write

How to allow multiple readers or one single writer?
- Need lock that can be shared amongst concurrent readers

e Can implement using other primitives (next slides)

- Keep integer i - # of readers or -1 if held by writer
- Protect i with mutex
- Sleep on condition variable when can’t get lock

0id ReleaseShared (sharedlk #*sl) {
lock (&sl->m);
if (!1--sl->i)
signal (&sl->c);
unlock (&sl->m);

0id ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);

sl->i = 0;

broadcast (&sl->c);

unlock (&sl->m);

* Any issues with this implementation?

¢ Fine-grained locking admits more parallelism
- E.g.,imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets
- So fine-grained locking should allow better speedup

* When might coarse-grained locking be better?
- Suppose you have global data that applies to whole hash table

struct hash_table {
size_t num_elements;
size_t num_buckets;
struct list *buckets;

>

/* num items in hash table */
/* size of buckets array */
/* array of buckets */

- Read num_buckets each time you insert
- Check num_elements on insert, possibly expand buckets & rehash
- Single global mutex would protect these fields

e Can you avoid serializing lookups to growable hash table?
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struct sharedlk {
int i; /* # shared lockers, or -1 if exclusively locked */
mutex_t m;
cond_t c;

}s

void AcquireExclusive (sharedlk *sl) {
lock (&sl->m);
while (sl->i) { wait (&sl->m, &sl->c); }
sl->i = -1;
unlock (&sl->m);

}

void AcquireShared (sharedlk *sl) {
lock (&sl->m);
while (&sl->i < 0) { wait (&sl->m, &sl->c); }
sl->i++;
unlock (&sl->m);
}
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void ReleaseShared (sharedlk #*sl) {
lock (&sl->m);
if ('--s1->i)
signal (&sl->c);
unlock (&sl->m);
}

void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);
}

e Any issues with this implementation?
- Prone to starvation of writer (no bounded waiting)
- How might you fix?
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Review: Test-and-set spinlock Memory reordering danger

struct var {
int lock;
int val;

};

* Suppose no sequential consistency (& don’t compensate)
e Hardware could violate program order

View on CPU #2
v->lock = 1;

void atomic_inc (var *v) {

while (test_and_set (&v->lock)) Program order on CPU #1

; v->lock = 1;
v->val++; register = v->val;
v->lock = 0;

}

v->val = register + 1;
v->lock = 0; v->lock = 0;
/* danger */;

v->val = register + 1;

void atomic_dec (var *v) {
while (test_and_set (&v->lock))

v->val--;
v->lock = 0;
}

e Is this code correct without sequential consistency?

e If atomic_inc called at /* danger */,bad val ensues!
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Ordering requirements

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v->val++;
/* danger */
v->lock = 0;
}
* Must ensure all CPUs see the following:
1. v->lock = 1ran before v->val was read and written
2. v->lock = Oran after v->val was written
* How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax, (%edx)

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v->val++;
/* danger */
v->lock = 0;

}

© Must ensure all CPUs see the following:

1. v->lock = 1ran before v->val was read and written
2. v->lock = Oran after v->val was written

* How does #1 get assured on x86?

- Recall test_and_set uses xchgl %eax, (%edx)
- xchgl instruction always “locked,” ensuring barrier

* How to ensure #2 on x86? * How to ensure #2 on x86?
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Gcc extended asm syntax [gnu]

asm volatile (template-string : outputs : inputs : clobbers) ; |

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v_;va1++; e Puts template-string in assembly language compiler output
asm volatile ("sfence" ::: '"memory"); - Expands %0, %1, ... (a bit like printf conversion specifiers)
) v->lock = 0; - Use “%%” for a literal % (e.g., “%%cr3” to specify %cr3 register)

« Must ensure all CPUs see the following: e inputs/outputs specify parameters as "constraint" (value)

1. v->lock = 1ran before v->val was read and written
2. v->lock = Oran after v->val was written
* How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax, (%edx)
- xchgl instruction always “locked,” ensuring barrier
* How to ensure #2 on x86?
- Might need fence instruction after, e.g., non-temporal stores
- Definitely need compiler barrier

int outvar, invar = 3;
asm ("movl %1, %0" : "=r" (outvar)
/* now outvar == 3 */

: "r" (invar));

e clobbers lists other state that get used/overwritten
- Special value "memory" prevents reordering with loads & stores
- Serves as compiler barrier, as important as hardware barrier

® volatile indicates side effects other than result
- Otherwise, gcc might optimize away if you don’t use result
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Correct spinlock on alpha Memory barriers/fences

¢ Recall implementation of test_and_set on alpha (with much
weaker memory consistency than x86):

_test_and_set:

¢ Fortunately, consistency need not overly complicate code
- If you do locking right, only need a few fences within locking code

1dg_1 v0, 0(a0) # vO = *lockp (LOCKED) - Code will be easily portable to new CPUs
bne v0o, 1f # if (v0) return .

addq  zero, 1, vO # 70 = 1 * Most programmers should stick to mutexes

stq_c v0, 0(a0) # *lockp = vO (CONDITIONAL) * But advanced techniques may require lower-level code
#

beq v0, _test_and_set # if (failed) try again - Later this lecture will see some wait-free algorithms

mb
addq zero, zero, vO # return 0 - Also important for optimizing special-case locks
1: ret zero, (ra), 1 (E.g., linux kernel rw_semaphore, ...)

* Memory barrier instruction mb (like mfence) Algorithms often explained assuming sequential consistency
- All processors will see tha_t everything before mb in program order - Must know how to use memory fences to implement correctly
happened before everything after mb in program order - E.g., see [Howells] for how Linux deals with memory consistency

* Need barrier before releasing spinlock as well: - And another plug for Why Memory Barriers
3?’31211{&21(1)? ("mb? ::: "memory"); ¢ Next: How C11 allows portable low-level code
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¢ Lots of variation in atomic instructions, consistency models,
compiler behavior

@ Cache coherence - the hardware view - Changing the compiler or optimization level can invalidate code

Different CPUs today: Many laptops (not Apple) are x86, while
your cell phone uses ARM

- x86: Total Store Order Consistency Model, CISC
- arm: Relaxed Consistency Model, RISC

@ Synchronization and memory consistency review

©® C11 Atomics

Could make it impossible to write portable kernels and
applications

@ Avoiding locks

Fortunately, the C11 standard has builtin support for atomics
- If not on by default, use gcc -std=gnulil or -std=gnu17

Also available in C++11, but won’t discuss today
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Background: C memory model [C11] C11 Atomics: Big picture

e C11 says a data race produces undefined behavior (UB)

- A write conflicts with a read or write of same memory location
- Two conflicting operations race if not ordered by happens before

e Within a thread, many evaluations are sequenced
- E.g,in“f10; £20) ;" evaluation of £1 is sequenced before £2

* Across threads, some operations synchronize with others - Undefined can be anything (e.g., delete all your files, ...)
- E.g., releasing mutex m synchronizes with a subsequent acquire m - Think UB okay in practice? See [Wang], [Lattner]
e Evaluation A happens before B, which we’ll write A — B, when: » Spinlocks (and hence mutexes that internally use spinlocks)
- Ais sequenced before B (in the same thread), synchronize across threads
- A synchronizes with B, - Synchronization adds happens before arrows, avoiding data races
- Ais dependency-ordered before B (ignore for now—means A has * Yet hardware supports other means of synchronization
release semantics and B consume semantics for same value), or . . . .
) . 1 e Cl1 atomics provide direct access to synchronized lower-level
- There is another operation X such thatA — X — B. operations

- E.g., can get compiler to issue lock prefix in some cases

Except chain of “—” cannot end: ..., dependency-ordered, sequenced before
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C11 Atomics: Basics Locking and atomic flags

¢ Include new <stdatomic.h> header
* New _Atomic type qualifier: e.g., _Atomic int foo;
- Convenient aliases: atomic_bool, atomic_int, atomic_ulong, ...
- Must initialize specially:
#include <stdatomic.h>
_Atomic int global_int = ATOMIC_VAR_INIT(140);

Atom.ic_(int) *dyn = malloc(sizeof (*dyn)) ;
atomic_init(dyn, 140);
* Compiler emits read-modify-write instructions for atomics
- E.g., +=, -=, |=, &=, "=, ++, -- do what you would hope
- Act atomically and synchronize with one another

e Also functions including atomic_fetch_add,
atomic_compare_exchange_strong,...

27/47

Exposing weaker consistency Memory ordering

enum memory_order { /*...*/ };

_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *obj, memory_order order) ;
void atomic_flag_clear_explicit(

volatile atomic_flag *obj, memory_order order) ;

C atomic_load_explicit(

const volatile A *obj, memory_order order) ;
void atomic_store_explicit(

volatile A *obj, C desired, memory_order order);

bool atomic_compare_exchange_weak_explicit(
A xobj, C *expected, C desired,
memory_order succ, memory_order fail);

o Atomic functions have _explicit variants
- These guarantee coherence but not sequential consistency

- May allow compiler to generate faster code
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Types of memory fence? Example: Atomic counters

Acquire fence
Acq_rel fence ‘

[ Load-Load Load-Store]
I Store-Store

—

Store-Load

Release fence
Seq_cst fence

e X-Y fence = operations of type X sequenced before the fence
happen before operations of type Y sequenced after the fence

2Credit to [Preshing] for explaining it this way
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¢ Implementations might use spinlocks internally for most
atomics
- Could interact badly with interrupt/signal handlers
- Can check if ATOMIC_INT_LOCK_FREE, etc., macros defined
- Fortunately modern CPUs don’t require this
® atomic_flagis a special type guaranteed lock-free
- Boolean value without support for loads and stores
- Initialize with: atomic_flag mylock = ATOMIC_FLAG_INIT;
- Only two kinds of operation possible:
> _Bool atomic_flag_test_and_set(volatile atomic_flag *obj);
> void atomic_flag_clear(volatile atomic_flag *obj);

- Above functions guarantee sequential consistency (atomic
operation serves as memory fence, too)
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e Six possible memory_order values:
1. memory_order_relaxed: Nno memory ordering
. memory_order_consume: super tricky, see [Preshing] for discussion
. memory_order_acquire: for start of critical section
. memory_order_release: for end of critical section
. memory_order_acq_rel: combines previous two
. memory_order_seq_cst: full sequential consistency

o uh WN

* Also have fence operation not tied to particular atomic:
void atomic_thread_fence(memory_order order);

e Suppose thread 1 releases and thread 2 acquires

- Thread 1’s preceding accesses can’t move past release store
- Thread 2’s subsequent accesses can’t move before acquire load
- Warning: other threads might see a completely different order

30/47

_Atomic(int) packet_count;

void recv_packet(...)

{
atomic_fetch_add_explicit(&packet_count, 1,
memory_order_relaxed) ;

}

void reset_counter()

atomic_store_explicit (&packet_count, O,
memory_order_relaxed) 5
}

* Need to count packets accurately
* Don’t need to order other memory accesses across threads
¢ Relaxed memory order can avoid unnecessary overhead

- On x86, recv_packet doesn’t benefit, but reset_counter uses mov

compared to xchgl for packet_count = 0 )
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Example: Producer, consumer 1 Example: Producer, consumer 2

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_thread_fence(memory_order_release) ;
/* Prior loads+stores happen before subsequent stores */
atomic_store_explicit(&msg_ready, 1,
memory_order_relaxed) ;
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,
memory_order_relaxed);
if (!ready)
return NULL;
atomic_thread_fence(memory_order_acquire);
/* Prior loads happen before subsequent loads+stores */
return &msg_buf;
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Example: Test-and-set spinlock

void
spin_lock(atomic_flag *lock)
{

while(atomic_flag_test_and_set_explicit(lock,
memory_order_acquire))

}

void
spin_unlock(atomic_flag *lock)

atomic_flag_clear_explicit(lock, memory_order_release);

}

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_store_explicit (&msg_ready, 1,
memory_order_release);
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,
memory_order_acquire) ;
if (lready)
return NULL;
return &msg_buf;

}
e This is potentially faster than previous example
- E.g., atomic other stores after send can be moved before msg_buf
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Example: Better test-and-set spinlock

void spin_lock(atomic_bool *lock)
{
while(atomic_exchange_explicit(lock, 1,
memory_order_acquire)) {
while(atomic_load_explicit(lock, memory_order_relaxed)) {
#if __i386 || __x86_64
__builtin_ia32_pause();

#elif __ARM_ARCH >= 7 && __clang__
__builtin_arm_yield();
#endif
}
}
}

void spin_unlock(atomic_bool *lock)

atomic_store_explicit(lock, 0, memory_order_release);

}
e See [Rigtorp] for a good discussion
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/* PRODUCER */
for (5;) {
item *nextProduced
= produce_item ();

@ Cache coherence - the hardware view

@ Synchronization and memory consistency review mutex_lock (&mutex);
while (count == BUF_SIZE)
cond_wait (&nonfull,

© cC11Atomics fmutex) ;
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;
count++;

cond_signal (&nonempty) ;
mutex_unlock (&mutex);

@ Avoiding locks

37/47
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/* CONSUMER */
for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty,
&mutex) ;

nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
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Eliminating locks Lock-free producer/consumer

* One use of locks is to coordinate multiple updates of single
piece of state

* How to remove locks here?
- Factor state so that each variable only has a single writer

* Producer/consumer example revisited

- Assume one producer, one consumer

- Why do we need count variable, written by both?
To detect buffer full/empty

- Have producer write in, consumer write out (both _Atomic)

- Use in/out to detect buffer state
(sacrifice one buffer slot to distinguish completely full and empty)

- But note next example busy-waits, which is less good
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Version with relaxed atomics

void producer (void *ignored) {
int slot = atomic_load(&in);
for (5;) {
item *nextProduced = produce_item ();
int next = (slot + 1) % BUF_SIZE;
while (atomic_load_explicit(&out, memory_order_acquire) ==
next) // Could you use relaxed? ~~~~"""
thread_yield();
buffer[slot] = nextProduced;
atomic_store_explicit(&in, next, memory_order_release);
slot = next;
}
}

void consumer (void *ignored) {

// Use memory_order_acquire to load in (for latest buffer[myin])

// Use memory_order_release to store out

}
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Example: non-blocking stack Wait-free stack issues

struct item {
/* data */
_Atomic (struct item *) next;
};
typedef _Atomic (struct item *) stack_t;

void atomic_push (stack_t *stack, item *i) {
do {
i->next = *stack;
} while (!CAS (stack, i->next, i));
}

item *atomic_pop (stack_t *stack) {
item *i;
do {
i = xstack;
} while (!CAS (stack, i, i->next));
return i;

}
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atomic_int in, out;

void producer (void *ignored) {
for (;5;) {
item *nextProduced = produce_item ();
while (((in + 1) % BUF_SIZE) == out) thread_yield ();
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;

}

void consumer (void *ignored) {
for ;) {
while (in == out) thread_yield ();
nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
consume_item (nextConsumed) ;

}

[Note fences not needed because no relaxed atomics] oy

Non-blocking synchronization

Design algorithm to avoid critical sections
- Any threads can make progress if other threads are preempted
- Which wouldn’t be the case if preempted thread held a lock
Requires that hardware provide the right kind of atomics
- Simple test-and-set is insufficient

- Atomic compare and swap is good: CAS (mem, old, new)
If ¥mem == o1d, then swap *mem«—new and return true, else false

Can implement many common data structures
- Stacks, queues, even hash tables

Can implement any algorithm on right hardware

- Need operation such as atomic compare and swap
(has property called consensus number = oo [Herlihy])

- Entire kernels have been written without locks [Greenwald]
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stacle

a0 |
i = *stack;

reg < i->next

stack )E} )E} > NULL

Meanwhile, memory of object A
stack c > NULL gets recycled for A' of same type
stack )[ A )E C > NULL

CAS (stack, i, i->next4

stack

)E} 3 garbage
* “ABA” race in pop if other thread pops, re-pushes i
- Can be solved by counters or hazard pointers to delay re-use
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e Could also eliminate locks by having race conditions
* Maybe you think you care more about speed than correctness

++hits; /* each time someone accesses web site */

e Maybe you think you can get away with the race (NOT!, really)
if (linitialized) {

lock (m);

if (linitialized) {
initialize ();
atomic_thread_fence (memory_order_release); /* why? */
initialized = 1;

}

unlock (m);

}

e Butdon’tdo this [Vyukov], [Boehm]! Not benign at all
- Again, UB really bad! Like use-after free or array overflow bad
- If needed for efficiency, use relaxed-memory-order atomics
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The exciting conclusion of RCU
- Spoiler: safe on all architectures except on alpha

Building a better spinlock

What interface should kernel provide for sleeping locks?
Deadlock
Scalable interface design
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* Some data is read way more often than written
- Routing tables consulted for each forwarded packet
- Data maps in system with 100+ disks (updated on disk failure)
e Optimize for the common case of reading without lock
- E.g., global variable: routing_table *rt;
- Calllookup (rt, route); with nolock
e Update by making copy, swapping pointer
routing_table *newrt = copy_routing_table (rt);
update_routing_table (newrt);

atomic_thread_fence (memory_order_release);
rt = newrt;

¢ Is RCU really safe? Stay tuned next lecture...
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® Locks create serial code
- Serial code gets no speedup from multiprocessors O Rrcu
* Test-and-set spinlock has additional disadvantages

- Lots of traffic over memory bus
- Not fair on NUMA machines

@ Improving spinlock performance

© Kernel interface for sleeping locks

Idea 1: Avoid spinlocks

- We saw lock-free algorithms last lecture @ Deadlock
- Mentioned RCU last time, dive deeper today
* Idea 2: Design better spinlocks © Transactions

- Less memory traffic, better fairness
@ Scalable interface design

Idea 3: Hardware turns coarse- into fine-grained locks!
- While also reducing memory traffic for lock in common case

1/44 2/44

Read-copy update [McKenney] Is RCU really safe?

* Some data is read way more often than written

- Routing tables consulted for each forwarded packet

- Data maps in system with 100+ disks (updated on disk failure)
* Optimize for the common case of reading without lock

- Have global variable: _Atomic(routing_table *) rt;
- Use it with no lock * Yeson alpha, No on all other existing architectures

¢ Consider the use of global rt with no fences:
lookup (RELAXED(rt), route);

¢ Could a CPU read new pointer but then old contents of *rt?

#define RELAXED(var) \ * We are saved by dependency ordering in hardware
atomic_load_explicit(&(var), memory_order_relaxed) . R
- Instruction B depends on A if B uses result of A

[Eo o/ - Non-alpha CPUs won’t re-order dependent instructions
route = lookup(RELAXED(rt), destination); - If writer uses release fence, safe to load pointer then just use it

¢ Update by making copy, swapping pointer e This is the point of memory_order_consume

/* update mutex held here, serializing updates */ - Should be equivalent to acquire barrier on alpha

routing_table *newrt = copy_routing_table(rt); - But should compile to nothing (be free) on other machines

update_routing_table(newrt); - But hard to get semantics right (temporarily deprecated in C++)

atomic_store_explicit(&rt, newrt, memory_order_release);

3/44 4/44
Preemptible kernels Garbage collection
* Recall kernel !)rocess context from le.cture 1 « When can you free memory of old routing table?
- When CPU in kernel mode but executing on behalf of a process - When you are guaranteed no one is using it—how to determine?

(e.g., might be in system call or page fault handler)
- As opposed to interrupt handlers or context switch code
* A preemptible kernel can preempt process context code

- Take a CPU core away from kernel process context code between
any two instructions

- Give the same CPU core to kernel code for a different process
e Don’t confuse with:

- Interrupt handlers can always preempt process context code

- Preemptive threads (always have for multicore)

- Process context code running concurrently on other CPU cores

¢ Definitions:
- temporary variable - short-used (e.g., local) variable
- permanent variable - long lived data (e.g., global rt pointer)
- quiescent state - when all a thread’s temporary variables dead
- quiescent period - time during which every thread has been in
quiescent state at least once
* Free old copy of updated data after quiescent period
- How to determine when quiescent period has gone by?
- E.g., keep count of syscalls/context switches on each CPU
® Restrictions:

* Sometimes want or need to disable preemption - Can’t hold a pointer across context switch or user mode
- Code that must not be migrated between CPUs (per-CPU structs) (Never copy rt into another permanent variable)
- Before acquiring spinlock (could improve performance) - Must disable preemption while consuming RCU data structure
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@ Rcu

@ Improving spinlock performance
© Kernel interface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design
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MCS lock MCS Acquire

* Idea 2: Build a better spinlock
* Lock designed by Mellor-Crummey and Scott

- Goal: reduce bus traffic on cc machines, improve fairness
e Each CPU has a gnode structure in local memory

typedef struct gnode {
_Atomic (struct gqnode *) next;
atomic_bool locked;
} gnode;
- Local can mean local memory in NUMA machine
- Orjust its own cache line that gets cached in exclusive mode

* While waiting, spin on your local 1ocked flag

® Alockis agnode pointer: typedef _Atomic (gnode *) lock;
- Construct list of CPUs holding or waiting for lock
- lockitself points to tail of list list (or NULL when unlocked)

9/44

MCS Acquire MCS Acquire

¢ If unlocked, L is NULL
o If locked, no waiters, L is owner’s gqnode
o If waiters, *L is tail of waiter list:

acquire (lock *L, gnode *I) {
I->next = NULL;
gnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

= !
‘owneﬂﬁi{waiter}ﬂﬂwaiter}ﬁ{lwm NULL
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predecessor

* Atomic compare and swap: CAS (mem, old, new)
- If ¥mem == old, then swap *mem«snew and return true, else false
- On x86, can implement using locked cmpxchg instruction

- InC11, use atomic_compare_exchange_strong
(note: C atomics version sets old = *mem if *mem != old)

e Atomic swap: XCHG (mem, new)
- Atomically exchanges *mem«snew
- Implement w. C11 atomic_exchange, Or xchg on x86
e Atomic fetch and add: FADD (mem, val)
- Atomically sets *mem += val and returns old value of xmem
- Implement w. C11 atomic_fetch_add, lock add on x86
o Atomic fetch and subtract: FSUB (mem, val)

* Note: atomics return previous value (like x++, not ++x)
¢ All behave like sequentially consistent fences
- InC11, weaker _explicit versions take a memory_order argument

8/44

¢ If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gqnode
o If waiters, *L is tail of waiter list:

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

= ¢
’owneﬁﬂi{waite r}ﬁ{tﬁwaiter}ﬁcﬁNULL
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e If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gqnode
o If waiters, *L is tail of waiter list:

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (xL, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

]
Y
‘owner’ﬁi{waiter}ﬁ{t—{waiter}ﬁ(ﬁNULL NULL
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MCS Acquire MCS Release with CAS

¢ If unlocked, L is NULL
e If locked, no waiters, L is owner’s gqnode

release (lock *L, gnode *I) {
if (1I->next)

o If waiters, *L is tail of waiter list: i (SAS (+L, I, NULL))
return;
acquire (lock *L, gnode *I) { while (!I->next)
I->next = NULL; .

qnode *predecessor = I;

I->next->locked = false;
XCHG (*L, predecessor);

if (predecessor != NULL) { ¥
I->locked = true;
predecessor->next = I; o If I->next NULL and xL ==

i > . oy
Wh.lle (I->locked) - No one else is waiting for lock, OK to set *L. = NULL

}
) ;
predecessor next
L UL
Y
next N next . next
‘ownerf—»{wmter}——{walterNULL
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MCS Release with CAS MCS Release with CAS

release (lock *L, gnode *I) {

release (lock *L, gnode *I) {

if (1I->next) if ('I->next)
if (CAS (xL, I, NULL)) if (CAS (xL, I, NULL))
return; return;

while (!I->next) while (!I->next)

I->next->locked = false; I->next->locked = false;
} }
e If I->next NULLand +L !'= I e If I->next is non-NULL

- Another thread is in the middle of acquire
- Just wait for I->next to be non-NULL

. *L,
predecessor in locker D

i
@ ' ‘ *1 }Eﬁi{waite r}E{i{waiter}E{LNULL
EELNULL NULL
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- I->next oldest waiter, wake up with I->next->locked = false
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MCS Release w/o CAS MCS Release w/o C&S code

release (lock *L, gnode *I) {
if (I->next)

* What to do if no atomic CAS (consensus number ~), but do

have XCHG (consensus number 2)? I->next->locked = false;
s . else {
* Be optimistic—read *L with two XCHGs: qnode *o0ld_tail = NULL;
1. Atomically swap NULL into *L XCHG (*L, old_tail);
. if (old_tail == I)
- If old value of *L was I, no waiters and we are done return:
2. Atomically swap old L value back into *L ’
- If L unchanged, same effect as cas /* old_tail != I? CAS would have failed, so undo XCHG */
. gqnode *userper = old_tail;
e Otherwise, we have to clean up the mess XCHG (%L, userper);
- Some “userper” attempted to acquire lock between 1 and 2 vhile (I->next == NULL)
- Because «L was NULL, the userper succeeded if (userper) /* someone changed *L between 2 XCHGs */
(May be followed by zero or more waiters) userper->next = I->next;
- Graft old list of waiters on to end of new last waiter else
(Sacrifice small amount of fairness, but still safe) I->next->locked = false;
}
}
12/44
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@ Rcu

@ Improving spinlock performance
© Kernel interface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design
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e Unfortunately, previous slide not safe

- What happens if release called between lines 1 and 2?
- wakeup called on NULL, so acquire blocks

futex abstraction solves the problem [Franke]
- Ask kernel to sleep only if memory location hasn’t changed

void futex (int *uaddr, FUTEX_WAIT, int val...);
- Go to sleep only if *uaddr == val
- Extra arguments allow timeouts, etc.

® void futex (int *uaddr, FUTEX_WAKE, int val...);
- Wake up at most val threads sleeping on uaddr

uaddr is translated down to offset in VM object

- So works on memory mapped file at different virtual addresses in
different processes
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Futex example Futex example, second attempt

struct lock {
atomic_flag busy;
} .

void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy))
futex(&1lk->busy, FUTEX_WAIT, 1);

void release (lock *1k) {
atomic_flag_clear (&lk->busy);
futex (&1k->busy, FUTEX_WAKE, 1);
}

* What’s suboptimal about this code?
- release requires a system call (expensive) even with no contention

* See [Drepper] for these examples and a good discussion
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Sleeping locks must interact with scheduler
- For processes or native threads, must go into kernel (expensive)
- Common case is you can acquire lock—how to optimize?

Idea: never enter kernel for uncontested lock

struct lock {
atomic_flag busy;
_Atomic (thread *) waiters; /* wait-free stack/queue */
3
void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy)) { /* 1 */
atomic_push (&lk->waiters, self); /* 2 x/
sleep O;
}
}
void release (lock *1k) {
atomic_flag_clear (&lk->busy) ;
wakeup (atomic_pop (&lk->waiters));

}
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struct lock {
atomic_flag busy;
}.

void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy))
futex (&1lk->busy, FUTEX_WAIT, 1);
void release (lock *1k) {
atomic_flag_clear (&lk->busy);
futex (&1k->busy, FUTEX_WAKE, 1);
}

What’s suboptimal about this code?

See [Drepper] for these examples and a good discussion
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static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

}’
void acquire (lock *1k) {
int c;
while ((c = FADD(&lk->busy, 1))) /* 1 %/
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 */
}

void release (lock *1k) {
if (FSUB(&lk->busy, 1) !'= 1) {
1lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

Now what’s wrong with this code?
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Futex example, second attempt Futex example, third attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;
} .

void acquire (lock *1k) {
int c;
while ((c = FADD(&lk->busy, 1))) VAR
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 */
X

void release (lock *1k) {
if (FSUB(&1lk->busy, 1) !'= 1) {
1k->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

* Now what’s wrong with this code?
- Two threads could interleave lines 1 and 2, never sleep
- Could even overflow the counter, violate mutual exclusion

L ouine The deadlock problem

@ Rcu

@ Improving spinlock performance
© Kernel interface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

* Same problem with condition variables
- Suppose resource 1 managed by c;, resource 2 by ¢,
- Ahas 1, waits on c2, B has 2, waits on c1

* Or have combined mutex/condition variable deadlock:

- lock (a); lock (b); while (!ready) wait (b, c);

unlock (b); unlock (a);
- lock (a); lock (b); ready = true; signal (c);
unlock (b); unlock (a);

* One lesson: Dangerous to hold locks when crossing
abstraction barriers!

- l.e.,1lock (a) then call function that uses condition variable

18/44
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More deadlocks Deadlocks w/o computers
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struct lock {
// O=unlocked, 1=locked no waiters, 2=locked+waiters
atomic_int state;
};
void acquire (lock *1k) {
int ¢ = 1;
if (!CAS (&lk->state, 0, c)) {
XCHG (&1k->state, c = 2);
while (¢ !'= 0) {
futex ((int *) &lk->state, FUTEX_WAIT, 2);
XCHG (&lk->state, c = 2);
}
}
}
void release (lock *1k) {
if (FSUB (&lk->state, 1) '= 1) { // FSUB returns old value
1lk->state = 0;
futex ((int *) &lk->state, FUTEX_WAKE, 1);
}
}
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mutex_t ml, m2;

void pl (void *ignored) {
lock (mil);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}

void p2 (void *ignored) {
lock (m2);
lock (m1);
/* critical section */
unlock (mil);
unlock (m2);

}

e This program can cease to make progress - how?

e Can you have deadlock w/o mutexes?
21/44
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* Realissue is resources & how required

e E.g., bridge only allows traffic in one direction

- Each section of a bridge can be viewed as a resource.

- If adeadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible.
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Deadlock conditions Prevent by eliminating one condition

1. Limited access (mutual exclusion):

1. Limited access (mutual exclusion):

- Resource can only be shared with finite users - Buy more resources, split into pieces, or virtualize to make

2. No preemption: "infinite" copies

- Once resource granted, cannot be taken away - Threads: threads have copy of registers = no lock

3. Multiple independent requests (hold and wait): 2. No preemption:

- Don’task all at once
(wait for next resource while holding current one)

- Physical memory: virtualized with VM, can take physical page
away and give to another process!

3. Multiple independent requests (hold and wait):
- Wait on all resources at once (must know in advance)

4. Circularity in graph of requests

o All of 1-4 necessary for deadlock to occur
4. Circularity in graph of requests

- Single lock for entire system: (problems?)
- Partial ordering of resources (next)

* Two approaches to dealing with deadlock:

- Pro-active: prevention
- Reactive: detection + corrective action
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Resource-allocation graph Example resource allocation graph

* View system as graph

- Processes and Resources are nodes

\ \
- Resource Requests and Assignments are edges
Process:( )
P) () (A
thai
Resource with 4 instances: (20
P; requesting R;: @

R; ¥
* P; holding instance of R;: ° :
j R; -
R,
26/44 27/44
Graph with deadlock
R; A3
L] [
\ \
(7) 2
\o/ R,
(] ° \.
[ ] o
R, o
R,
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¢ If graph has no cycles = no deadlock

e If graph contains a cycle

- Definitely deadlock if only one instance per resource
- Otherwise, maybe deadlock, maybe not

¢ Prevent deadlock with partial order on resources
- E.g., always acquire mutex m; before m,

- Usually design locking discipline for application this way

Claim edges Example: unsafe state

R,

* Dotted line is claim edge

R

- Signifies process may request resource

Detecting deadlock

o Static approaches (hard)

¢ Dynamically, program grinds to a halt

- Threads package can diagnose by keeping track of locks held:

Resource-Allocation Graph

®

G‘:'Q

(b)
Corresponding wait-for graph

deadlock

unsafe

safe

* Determine safe states based on possible resource allocation

e Conservatively prohibits non-deadlocked states

30/44

31/44

R

* Note cycle in graph

- P; might request R, before relinquishing R;

- Would cause deadlock

32/44

Fixing & debugging deadlocks

Reboot system / restart application
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¢ Examine hung process with debugger

Threads package can deduce partial order

- For each lock acquired, order with other locks held
- If cycle occurs, abort with error
- Detects potential deadlocks even if they do not occur

e Oruse transactions...

- Another paradigm for handling concurrency
- Often provided by databases, but some OSes use them
- Vino OS used transactions to abort after failures [Seltzer]
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(@ Scalable interface design
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Transactional memory

* Some modern processors support transactional memory
* Transactional Synchronization Extensions (TSX) [intel1§16]

- xbegin abort_handler - begins a transaction

- xend - commit a transaction

- xabort $code - abort transaction with 8-bit code

- Note: nested transactions okay (also xtest tests if in transaction)
e During transaction, processor tracks accessed memory

- Keeps read-set and write-set of cache lines

- Nothing gets written back to memory during transaction

- Transaction aborts (at xend or earlier) if any conflicts

- Otherwise, all dirty cache lines are “written” atomically
(in practice switch to non-transactional M state of MESI)

38/44

¢ Idea: make it so spinlocks rarely need to spin
- Begin a transaction when you acquire lock
- Other CPUs won’t see lock acquired, can also enter critical section
- Okay not to have mutual exclusion when no memory conflicts!
- On conflict, abort and restart without transaction, thereby visibly
acquiring lock (and aborting other concurrent transactions)
* Intel support:
- Use xacquire prefix before xchgl (used for test and set)
- Use xrelease prefix before movl that releases lock
- Prefixes chosen to be noops on older CPUs (binary compatibility)
* Hash table example:
- Use xacquire xchgl in table-wide test-and-set spinlock

- Works correctly on older CPUs (with coarse-grained lock)
- Allows safe concurrent accesses on newer CPUs!
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e Atransaction T is a collection of actions with
- Atomicity - all or none of actions happen
- Consistency - T leaves data in valid state

Isolation - T’s actions all appear to happen before or after every
other transaction

- Durability* - T’s effects will survive reboots
- Often hear mnemonic ACID to refer to above

¢ Transactions typically executed concurrently
- Butisolation means must appear not to
- Must roll-back transactions that use others’ state
- Means you have to record all changes to undo them

When deadlock detected just abort a transaction
- Breaks the dependency cycle

INot applicable to topics in this lecture
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Using transactional memory

Idea 3: Use to get “free” fine-grained locking on a hash table
- E.g., concurrent inserts that don’t touch same buckets are okay
- Should read spinlock to make sure not taken (but not write) [Kim]
- Hardware will detect there was no conflict
¢ Can also use to poll for one of many asynchronous events
- Start transaction
- Fill cache with values to which you want to see changes
- Loop until a write causes your transaction to abort
¢ Note: Transactions are never guaranteed to commit

- Might overflow cache, get false sharing, see weird processor issue

- Means abort path must always be able to perform transaction
(e.g., you do need a lock on your hash table)

Sadly, very few CPUs still support this
- Buggy implementations disabled through microcode updates
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Scalable interfaces Are fork(), execve() broadly commutative?

pid_t pid = fork();
if (!pid)
execlp("bash", "bash", NULL);

* Not all interfaces can scale
¢ How to tell which can and which can’t?

* Scalable Commutativity Rule: “Whenever interface operations
commute, they can be implemented in a way that scales”
[Clements]
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Are fork(), execve() broadly commutative? Is open() broadly commutative?

pid_t pid = fork();

if (!pid) int fd1 = open("foo", O_RDONLY);
execlp("bash", "bash", NULL); int £fd2 = open("bar", O_RDONLY);

* No, fork() doesn’t commute with memory writes, many file
descriptor operations, and all address space operations

- E.g.,close(fd); fork(); Vvs. fork(); close(fd);

* execve() often follows fork() and undoes most of fork()’s
sub operations

® posix_spawn(), which combines fork() and execve() into a
single operation, is broadly commutative

- But obviously more complex, less flexible
- Maybe Microsoft will have the last laugh?
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Is open() broadly commutative?

int fdi
int fd2

open("foo", O_RDONLY);
open("bar", O_RDONLY);

¢ Actually open() does not broadly commute!

* Does not commute with any system call (including itself) that
creates a file descriptor

* Why? POSIX requires new descriptors to be assigned the
lowest available integer

¢ If we fixed this, open () would commute, as long as it is not
creating a file in the same directory as another operation
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Linkine

* Lab 2 due Wednesday
* Midterm review section Friday
* Midterm exam in class next Monday May 5

- Open note, but no textbook or electronic devices
- Bring lecture note printouts

- SCPD must register exam monitor or show up in person * How to name and refer to things that don’t exist yet

(no need to request permission to show up in person) . .
- Please remind us if you need OAE arrangements * How to merge separate name spaces into a cohesive whole
- Please send us your exam monitor if you are a non-SCPD with ¢ More information:

permission to take the exam under SCPD rules. (SCPD won’t send

. e - How to write shared libraries
the exam to your monitor, so we have to do it directly.)

- Run “nm,” “objdump,” and “readelf” on a few .o and a.out files.
- The ELF standard
- Examine /usr/include/elf.h

1/45 2/45

How is a program executed? x86 Assembly syntax

e Linux uses AT&T assembler syntax - places destination last
- Be aware that intel syntax (used in manual) places destination first
¢ Types of operand available:

* On Unix systems, read by “loader”
compile time run time

loader cache - Registers start with “%” - movl %edx,%eax
- Immediate values (constants) prefixed by “$” - movl $0xff,%edx
- (%reg) is value at address in register reg - movl (%edi) ,%eax
- Reads all code/data segments into buffer cache; - n(%reg) is value at address in (register reg)+n —-movl 8(Jebp) ,%eax
Maps code (read only) and initialized data (r/w) into addr space - *%reg in an indirection through reg - call jeax
- Or...fakes process state to look like paged out - Everything else is an address —movl var,%eax; call printf

* Some heavily used instructions
- movl - moves (copies) value from source to destination
- pushl/popl - pushes/pops value on stack
- call - pushes next instruction address to stack and jumps to target
- ret - pops address of stack and jumps to it
- leave - equivalent tomovl %ebp,%esp; popl %ebp
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Perspectives on memory contents Running example: hello program

° Programming language view: x += 1; add $1, %eax

* Lots of optimizations happen in practice:
- Zero-initialized data does not need to be read in.
- Demand load: wait until code used before get from disk
- Copies of same program running? Share code
- Multiple programs use same routines: share code

- Instructions: Specify operations to perform * Hello program
- Variables: Operands that can change over time

- Write friendly greeting to terminal
- Constants: Operands that never change

- Exit cleanly
* Hardware view: e Every programming language addresses this problem
- executable: code, usually read-only

- read only: constants (maybe one copy for all processes)

- read/write: variables (each process needs own copy)
* Need addresses to use data: [demo]
- Addresses locate things. Must update them when you move
- Examples: linkers, garbage collectors, URL
* Binding time: When is a value determined/computed?
- Early to late: Compile time, Link time, Load time, Runtime

5/45 6/45



Running example: hello program Hello world - CS212-style

Hello program
- Write friendly greeting to terminal
- Exitcleanly

* Every programming language addresses this problem
¢ Concept should be familiar if you took 106B:
int

main()

{
}

cout << "Hello, world!" << endl;

Today’s lecture: 80 minutes on hello world
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Examining hellol.s Disassembling hello1l

* Grab the source and try it yourself

- tar xzf /afs/ir.stanford.edu/class/cs212/hello.tar.gz
® gcc -S hellol.c produces assembly outputin hellol.s
® Check the definitions of my_errno, greeting, main, my_write
® .globl symbol makes symbol global
e Sections of hellol.s are directed to various segments

- .text says put following contents into text segment

- .data, .rodata says to put into data or read-only data

- .comm symbol,size,align declares symbol and allows multiple

definitions (like C but not C++, now requires -fcommon flag)

* See how function calls push arguments to stack, then pop

pushl $greeting # Argument to my_strlen is greeting
call my_strlen # Make the call (length now in %eax)
addl  $4, %esp # Must pop greeting back off stack
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How is a process specified? Recall what process memory looks like

$ readelf -h hellol
ELF Header:

Entry point address: 0x8049030
Start of program headers: 52 (bytes into file)
Start of section headers: 14968 (bytes into file)
Number of program headers: 8
Number of section headers: 23
Section header string table index: 22

* Executable files are the linker/loader interface. Must tell OS:
- What is code? What is data? Where should they live?
- Thisis part of the purpose of the ELF standard
o Every ELF file starts with ELF an header
- Specifies entry point virtual address at which to start executing
- But how should the loader set up memory?
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#include <sys/syscall.h>
int my_errno;
const char greeting[] = "hello world\n";

int my_write(int fd, const void *buf, size_t len)
{
int ret;
asm volatile ("int $0x80" : "=a" (ret)
: "0" (SYS_write),
llbll (fd), "C" (buf), lldll (1en)

: "memory") ;
if (ret < 0) {
my_errno = -ret;
return -1;
}
return ret;

}

int main() { my_write (1, greeting, my_strlen(greeting)); }
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my_write (1, greeting, my_strlen(greeting));

8049208: 68 08 a0 04 08 push  $0x804a008

804920d: e8 93 ff ff ff call 80491ab <my_strlen>
8049212: 83 c4 04 add $0x4, %esp

8049215: 50 push  Jeax

8049216: 68 08 a0 04 08 push  $0x804a008

804921b: 6a 01 push  $0x1

804921d: e8 aa ff ff ff call 80491cc <my_write>
8049222: 83 c4 Oc add $0xc, %esp )

¢ Disassemble from shell with objdump -Sr hellol
* Note push encodes address of greeting (0x804a008)

o Offsets in call instructions: 0xffffffo3 = -109, Oxffffffaa = -86
- Binary encoding takes offset relative to next instruction
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stack

«——_ mmapped

dynamic 1 regions

heap
uninitialized data (bss)

init :
staticy T — T
read-only data
code (text)

e Address space divided into “segments”

- Text, read-only data, data, bss, heap (dynamic data), and stack
- Recall gce told assembler in which segments to put what contents
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Who builds what? ELF program header

* Heap: allocated and laid out at runtime by malloc $ readelf -1 hellol

- Namespace constructed dynamically, managed by programmer IPrEeEE, [l

. . . . Type Offset  VirtAddr PhysAddr FileSiz MemSiz Flg Align
(names stored in pointers, and organized using data structures) LOAD  0x001000 0x08049000 0x08049000 0x00304 0x00304 R E 0x1000

- Compiler, linker not involved other than saying where it can start LOAD  0x002000 0x0804a000 0x0804a000 0x00158 0x00158 R  0x1000

. . LOAD 0x002f£f8 0x0804bff8 0x0804bff8 0x0001c 0x0003c RW 0x1000
o Stack: allocated at runtime (func. calls), layout by compiler * * * HPRe TR *

- Names are relative off of stack (or frame) pointer Section to Segment mapping:

- Managed by compiler (alloc on procedure entry, free on exit) ngment Secti:‘;;' @

- Linker not involved because namespace entirely local: 02 rodata ...

Compiler has enough information to build it. 03 O S ey )

* Global data/code: allocated by compiler, layout by linker * For executables, the ELF header points to program headers

- Compiler emits them and names with symbolic references - Says what segments of file to map where, with what permissions

- Linker lays them out and translates references e Segment 03 has shorter file size then memory size
* Mmapped regions: Managed by programmer or linker - Only Ox1c bytes must be read into memory from file

- Remaining 0x20 bytes constitute the .bss

- Some programs directly call mmap; dynamic linker uses it, too
* Who creates the program header? The linker

12/45 13/45

Linkers (Linkage editors) Linkers (Linkage editors)

e Unix: ld e Unix: ld
- Usually hidden behind compiler - Usually hidden behind compiler
- Rungcc -v hello.c to seeld orinvoked (may see collect2) - Rungcc -v hello.ctoseeld orinvoked (may see collect2)
* Three functions: e Three functions:
- Collect together all pieces of a program - Collect together all pieces of a program
- Coalesce like segments - Coalesce like segments
- Fix addresses of code and data so the program can run - Fix addresses of code and data so the program can run
* Result: runnable program stored in new object file ® Result: runnable program stored in new object file
* Why can’t compiler do this? * Why can’t compiler do this?
- Limited world view: sees one file, rather than all files
e Usually linkers don’t rearrange segments, but can e Usually linkers don’t rearrange segments, but can
- E.g., re-order instructions for fewer cache misses; - E.g., re-order instructions for fewer cache misses;
remove routines that are never called from a.out remove routines that are never called from a.out
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Simple linker: two passes needed Where to put emitted objects?
* Assember:
° Passl: - Doesn’t know where data/code should be 0 main:
- Coalesce like segments; arrange in non-overlapping memory placed in the process’s address space :
- Read files’ symbol tables, construct global symbol table with entry - Assumes each segment starts at zero call my_write
for every symbol used or defined - Emits symbol table that holds the name and
- Compute virtual address of each segment (at start+offset) offset of each created object
. - Routines/variables exported by file are ret
* Pass2: recorded as global definitions 60 my_strlen:
- Patch references using file and global symbol table imol Lo .
~ Emit result e Simpler perspective: e
. X - - Codeisin abig byte array
o fngn?:l table: information about program kept while linker - Data s in another big byte array Spain: 0: T
g ) ) ) - Assembler creates (object name, index) my_strlen: 60: t
- Segments: name, size, old location, new location tuple for each interesting thing greeting: 0: R
- Symbols: name, input segment, offset within segment - Linker then merges all of these arrays
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Object files Relative relocations

$ objdump -Sr hello2.o

48: 50

push  Yeax
49: 68 00 00 00 00 push  $0x0
4a: R_386_32 greeting
4e: 6a 01 push  $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>

51: R_386_PC32 my_write
55: 83 c4 10 add $0x10, %esp

4

e Let’s create two-file program hello2 with my_write in separate
file
- Compiler and assembler can’t possibly know final addresses
* Notice push uses 0 as address of greeting

® And call uses -4 as address of my_write—why?
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* How to call procedures or reference variables?
- E.g., calltomy_write needs a target addr
- Assembler uses 0 or PC (%eip) for address

- Emits an external reference telling the linker the instruction’s
offset and the symbol it needs to be patched with

main:

pushl $0x0

pushl $0x1
call -4/

main: 0: T

my_strlen: 40: t

\| greeting: 4a
Smy_write: 51

o At link time the linker patches every reference
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$ readelf -S hello2.o

[Nr] Name Type Addr 0ff Size ES Flg Lk Inf Al
[ o] NULL 00000000 000000 000000 00 0 0

[ 1] .text PROGBITS 00000000 000034 0000a4 00 AX O O 1
[ 2] .rel.text REL 00000000 0005£8 000018 08 I 20 1 4
[ 3] .data PROGBITS 00000000 0000d8 000000 00 WA O O 1
[ 4] .bss NOBITS 00000000 000048 000000 00 WA O O 1
[ 5] .rodata PROGBITS 00000000 000048 00000d 00 A O 0 4
[20] .symtab SYMTAB 00000000 0004£0 000040 10 21 9 4
[21] .strtab STRTAB 00000000 0005c0 000038 00 0 0 1

A

* Memory segments have corresponding PROGBITS file segments

But relocations and symbol tables reside in segments, too
* Segments can be arrays of fixed-size data structures
- So strings referenced as offsets into special string segments
Remember ELF header had section header string table index
- That’s so you can interpret names in section header
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Null call without relocations

00000000 <.text>:
0: e8 00 00 00 00 call 0x5
5: 58 pop heax

* Imagine a call to the very next instruction
- Doesn’t affect control flow, just pushes return address on stack
* Hardware expects offset 00 00 00 00 embedded in call
* Suppose we needed a relocation for the call (not shown)
- Linker computes relative offset from relocation to target
- Targetis byte 5, relocation at byte 1, so relative difference is 4
- Linker will adds 4 to value found in object file
- Hence, store -4 (0xfffffffc) in file to get linker result 00 00 00 00
* Must compensate with -4 in binary regardless of the target
- Linker is relative to offset, hardware is relative to next instruction
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$ readelf -r hello2.o0

Offset

Info Type Sym.Value Sym. Name

00000039 00000801 R_386_32 00000000  greeting
0000004a 00000801 R_386_32 00000000  greeting
00000202 R_386_PC32 00000000 my_write

00000051

* Object file stores list of required relocations

- R_386_32 says add symbol value to value already in file (often 0)

- R_386_PC32 says add difference between symbol value and patch
location to value already in file (often -4 for ca11)

- Info encodes type (low byte) and symbolindex (<<8)
(Type and Sym. Name are human-readable translation of Info)
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$ readelf -s hello2.o
Num: Value Size Type Bind Vis Ndx Name
3: 00000000 39 FUNC LOCAL DEFAULT 1 my_strlen
9: 00000000 13 OBJECT GLOBAL DEFAULT 5 greeting
10: 00000027 62 FUNC  GLOBAL DEFAULT 1 main
11: 00000000 0 NOTYPE GLOBAL DEFAULT UND my_write
’

e Lists all global, exported symbols
- Sometimes local ones, too, for debugging (e.g., my_strlen)
e Each symbol has an offset in a particular section number
- On previousslide, 1 = .text, 5= .rodata
- Special undefined section 0 means need symbol from other file
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How to lay out emitted objects? What is a library?

o At link time, linker first: e Astatic library is just a collection of .o files
- Coalesces all like segments (e.g., all . text, .rodata) from all files ¢ Bind them together with ar program, much like tar
- Determines the size of each segment and the resulting address to - E.g.,ar cr libmylib.a objl.o obj2.0 obj3.o
place each object at - Onmany OSes, run ranlib libmylib.a (to build index)

- Stores all global definitions in a global symbol table that maps the . .
definition to its final virtual address * You can also list (t) and extract (x) files

. - E.g.,try:ar tv /usr/lib/libc.a
* Thenin a second phase: &ty v USE SRS

- Ensure each symbol has exactly 1 definition (except weak symbols, * When linking a .a (archive) file, linker only pulls in needed files

when compiling with -£fcommon) - Ensures resulting executable can be smaller than big library
- For each relocation: * readelf will operate on every archive member (unweildy)
> Look up referenced symbol’s virtual address in symbol table - But often convenient to disassemble with
> Fix reference to reflect address of referenced symbol objdump -d /usr/lib/libc.a
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Examining programs with nm Examining sections with objdump

Note Load mem addr. and File off have

$ nm a.out
int uninitialized; VA\ symbol type same page alignment for easy mmapping
B bjdump -h a.out
e 0400400 T _start i.gu%:umP file format elf64-xB86-64
const int constant = 2; 04005bc R constant Sections: ) )
im—' main () 0601008 W data_start Idx Name Size VMA LMA File off Algn
0601020 D initialized 12 .text  000001a8 00400400 00400400 00000400 2x*4
. CONTENTS, ALLOC, LOAD, READONLY, CODE
) S 04004b8 T main
nitiali 14 .rodata 00000008 004005b8 004005b8 000005b8 2x*2
0601028 B uninitialized CONTENTS, ALLOC, LOAD, READONLY, DATA
J. H ...
* Ifdon’t need full readel£, can use nn (an -D on shared objects) 17 .ctors 00000010 00600e18 00600el8 00000e18 2%*3
- Handy -o flag prints file, useful with grep CONTENTS, ALLOC, LOAD, DATA
* R means read-only data (.rodata in elf) ‘23 .data  000000ic 00601008 00601008 00001008 2%*3
- Note constant VA on same page asmain CONTENTS, ALLOC, LOAD, DATA
- Share pages of read-only data just like text 24 .bss 0000000c 00601024 00601024 00001024 22
* B means uninitialized data in “BSS” . ALLOC—_ No contents.in file J
* Lower-case letters correspond to local symbols (static in C) e Another portable alternative to readelf
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Mangling not
% nm overload.o compatible across

e Initializers run before main

// C++ . compiler versions /1 C++ . »
int foo (int a) ggggggo i -;2:0"?_ int a_foo_exists; - Mechanism is platform-specific
e - 0011 . .
return 0; U __gxx_perschality_v0 struct foo_t { * Example implementation:
Demangle names foo‘; 0 {, -4 - Compiler emits static function in
int foo (int a, int b) % nm overload.o | c++filt a_foo_exists = 1; each file running initializers
' 0000000 T foo(int) ¥ b - Wrap linker with collect2 program
return 0; 000000e T foo(int, int) ’ that generates ___main function
) U __gxx_personality_v0 foo_t foo; ) calling all such functions
T N - Compilerinserts callto ___main
f . . when compiling real main
® C++can have many functions with the same name % cc -S -o- ctor.C | c++filt
e Compiler therefore mangles symbols text

.align 2

- Makes a unique name for each function __static_initialization_and_destruction_0(int, int):

- Also used for methods/namespaces (obj: : £n), template

instantiations, & special functions such as operator new call ~ foo_t::foo_t()
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Other information in executables

// C++

struct foo_t { * Throwing exceptions destroys
“foo_t() {/x...*/} automatic variables

}‘except() L throw 05 3 | . pyring exception, must find

ol S 0 - All such variables with non-trivial

destructors

{ , .
£ . - Inall procedures’ call frames until
oo_t foo; exception caught
foo.except(); P &
/% ... x/ » Record info in special sections

} W

* Executables can include debug info (compile w. -g)
- What source line does each binary instruction correspond to?
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Dynamic linking (continued) Static shared libraries

* How can behavior differ compared to static linking?

- Runtime failure (can’t find file, doesn’t contain symbols)
- No type checking of functions, variables

* Where to get unresolved symbols (e.g., my_write) from?
- dlsym must parse ELF file to find symbols
* How doesmy_write know its own addresses?

$ readelf -r dest/libmy.so
Relocation section ’.rel.dyn’ at offset 0x20c contains 1 entry:

Offset Info Type Sym.Value Sym. Name
00003ffc 00000106 R_386_GLOB_DAT 0000400c  my_errno

- dlopen, too, must parse ELF to patch relocations
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Static shared libraries Dynamic shared libraries

* Define a “shared library segment” at same address in every
program’s address space

v cc
IS 0xffe0000

0xffe0000, 0xffe0000Q

OxfffOOOO{i Oxfffoooo{E 0xfff0000

* Every shared lib is allocated a unique libc.a
range in this seg, and computes where 0xffe0000
its external defs reside

e Linker links program against lib OxFff math.a |
(why?) but does not bring in actual code

* Loader marks shared lib region as unreadable

* When process calls lib code, seg faults: embedded linker
brings in lib code from known place & mapsi it in.

* Now different running programs can share code!
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Dynamic (runtime) linking (hel103.c)

#include <dlfcn.h>
int main(int argc, char **argv, char **envp)
{
size_t (*my_strlen) (const char *p);
int (*my_write) (int, const void *, size_t);
void *handle = dlopen("dest/libmy.so", RTLD_LAZY);
if ('handle
|| '(my_strlen = dlsym(handle, "my_strlen"))
|l !'(my_write = dlsym(handle, "my_write")))
return 1;
return my_write (1, greeting, my_strlen(greeting)) < 0;

¢ Link time isn’t special, can link at runtime too

- Get code (e.g., plugins) not available when program compiled
® |ssues:

- How can behavior differ compared to static linking?

- Where to get unresolved symbols (e.g., my_write) from?

- How does my_write know its own addresses (e.g., for my_errno)?
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¢ Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

1s gcc
4500 9000
libc.a libc.a
printf: printf:
scanf: scanf:

¢ Insight: we can have a single copy on disk if we don’t actually
include libc code in executable
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e Static shared libraries require system-wide pre-allocation of
address space

- Clumsy, inconvenient
- What if a library gets too big for its space? (fragmentation)
- Can’t upgrade libraries w/o relinking applications
- Can space ever be reused?

¢ Solution: Dynamic shared libraries
- Combine shared library and dynamic linking ideas
- Any library can be loaded at any VA, chosen at runtime

* New problem: Linker won’t know what names are valid
- Solution: stub library

* New problem: How to call functions whose position varies?
- Solution: next page...
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Position-independent code Lazy dynamic linking

¢ Code must be able to run
anywhere in virtual mem

* Runtime linking would prevent

code sharing, so...

¢ Add a level of indirection!

0x080480

00
program

0x08048f
44
libe

main:

call Erin‘rf!
printf:

ret

Static Libraries

Dynamic linking with ELF Dynamic shared library example: hello4

0x080480

00
program

PLT
(r/o code)

GOT
(r/w
data)

0x400012
34
libc

main:

call printf &
printf:

call 60T[5],

[5] &printf

/

printf: e

ret

Dynamic Shared Libraries

* Every dynamically linked executable needs an interpreter
- Embedded as string in special . interp section
- readelf -p .interp /bin/ls — /1ib64/1d-linux-x86-64.s0.2
- Soall the kernel has to do is run 1d-1inux

e dlfixup uses hash table to find symbols when needed

* Hash table lookups can be quite expensive [Drepper]

- E.g., big programs like OpenOffice very slow to start
- Solution 1: Use a better hash function
> linux added . gnu.hash section, later removed .hash sections

- Solution 2: Export fewer symbols. Now fashionable to use:
> gce -fvisibility=hidden (keep symbols local to DSO)
> #pragma GCC visibility push(hidden)/visibility pop
> __attribute__(visibility("default")), (override for a symbol)

hello4 relocations hello4 shared object contents

$ readelf -r hellod

Relocation section ’.rel.plt’ at offset Ox314 contains 2 entries:
Offset Info Type Sym.Value Sym. Name
0804c00c 00000107 R_386_JUMP_SLOT 00000000 my_write
0804c010 00000507 R_386_JUMP_SLOT 00000000 my_strlen
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® PLT = procedure linkage table on last slide
- Small 16 byte snippets, read-only executable code

* d1fixup Knows how to parse relocations, symbol table
- Looks for symbols by name in hash tables of shared libraries

° my_write &my_strlen are pointers in global offset table (GOT)
- GOT non-executable, read-write (so d1fixup can fix up)

* Note hello4 knows address of greeting, PLT, and GOT
- How does a shared object (1ibmy . so) find these?
- PLT is okay because calls are relative
- In PIC, compiler reserves one register %ebx for GOT address
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0x080480 -
00 main:
program e Linking all the functions at

¢.:;1'II Er'in'tf 3 startup costs time
PLT | printf: * Program might only call a few of

(r/0 code) | call GOT(5] | them

GOoT | ... « Only link each function on its
(r/w [5): difixup first call
data) ...
0x400012 ” difi
34 printf: ixup:
libc ... \ GOT[5] = &printf

ret call printf,
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$ objdump -Sr hello4

08049030 <my_write@plt>:

8049030: £f 25 Oc cO 04 08 jmp  *0x804c00c
8049036: 68 00 00 00 00 push  $0x0
804903b: €9 e0 ff ff ff jmp 8049020 <.plt>

08049040 <my_strlen@plt>:

8049040: ff 256 10 cO 04 08 jmp *0x804c010

8049046 68 08 00 00 00 push  $0x8

804904b: e9 do ff ff ff jmp 8049020 <.plt>

804917a: 68 08 a0 04 08 push  $0x804a008

804917%: e8 bc fe ff ff call 8049040 <my_str1en@p1t>}

® 0x804c00c and 0x804c010 initially point to next instruction
- Calls d1fixup with relocation index

- Note second jmp of each entry goes to Oth PLT entry, which jumps

to d1fixup
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mywrite.c
int my_errno;
int my_write(int fd, const void *buf, size_t len) {
int ret;
asm volatile (/* ... */);
if (ret < 0) {
my_errno = -ret;
return -1;
}
return ret;
} v
mywrite.s mywrite-pic.s
negl %eax
negl Jeax movl Yeax, %edx
movl %eax, my_errno movl my_errno@GOT (%ebx), %eax
movl %edx, (%eax) )
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How does /,cbx get set? Linking and security

mywrite-pic.s

o void fn O 1. Attacker puts code in buf
e hl Y%eb { - Overwrites return address to jump to code
Pusst b char buf[80];
movll11 ée:p, hebp gets (buf); 2. Attacker puts shell command above buf
us heDX . .
Subl $16, %esp S - Overwrites return address so function
call __x86.get_pc_thunk.bx ¥ “returns” to system function in libc

addl  $_GLOBAL_OFFSET_TABLE_, %ebx L
. e People try to address problem with linker

__x86. geé_pc_thunk.bx: * WAX: No memory both writable and executable

m°:1 (hesp) , hebx - Prevents 1 but not 2, must be disabled for jits
re

7 ¢ Address space randomization
- Makes attack #2 a little harder, not impossible

- Leads to position-independent executable, compiled -fpie and
linked -pie—like PIC for executables

$ readelf -r .libs/mywrite.o

Offset Info Type Sym.Value Sym. Name
00000008 00000202 R_386_PC32 00000000 __x86.get_pc_thunk.bx
0000000e 00000b0a R_386_GOTPC 00000000 _GLOBAL_OFFSET_TABLE_

00000036 0000082b R_386_GOT32X 00000000 my_errno ) ¢ Also address with compiler (stack protector, CFI)
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Linking Summary Code = data, data = code

* Compiler/Assembler: 1 object file for each source file
- Problem: incomplete world view

* No inherent difference between code and data
- Code is just something that can be run through a CPU without

- Where to put variables and code? How to refer to them? causing an “illegal instruction fault”
- Names definitions symbolically (“print£”), refers to - Can be written/read at runtime just like data “dynamically
routines/variable by symbolic name generated code”
¢ Linker: combines all object files into 1 executable file * Why? Speed (usually)
- Big lever: global view of everything. Decides where everything - Big use: eliminate interpretation overhead. Gives 10-100x
lives, finds all references and updates them performance improvement
- Impoﬁqnt;nterface with OS: what is code, what is data, where is - Example: Just-in-time Javascript compiler, or gemu vs. bochs
start point? - In general: optimizations thrive on information. More information
* 0S loader reads object files into memory: atruntime.
- Allows optimizations across trust boundaries (share code) ¢ The big tradeoff:
- Provides interface for process to allocate memory (sbrk) - Total runtime = code gen cost + cost of running code
43/45 44/45

* Determine binary encoding of desired instructions
SPARC: sub instruction

symbolic = “sub rdst, rsrcl, rsrc2”

I I I R

binary = 10 rd 100 rsi rs2
bit pos: 31 30 25 19 14 0

o Write these integer values into a memory buffer
unsigned code[1024], *cp = &code[0]:
/* sub %g5, %g4, %g3 */
*cp++ = (2<<30) | (5<<25) | (4<<19) |(4<<14) | 3;

* Usemprotect to disable WAX
* Jump to the address of the buffer: ((int (x) ))code) O ;

45/45
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/* (from glibc sysdeps/unix/sysv/linux/i386/sysdep.h)
https://sourceware.org/git/?p=glibc.git;a=blob; f=sysdeps/unix/sysv/1linux/i386/sysdep
.h

Linux takes system call arguments in registers:

syscall number %eax call-clobbered
arg 1 sebx call-saved
arg 2 %ecx call-clobbered
arg 3 Sedx call-clobbered
arg 4 $esi call-saved
arg 5 %edi call-saved
arg 6 %ebp call-saved

*/

#include <sys/syscall.h>

typedef unsigned long size_t;

int my_write(int, const void *, size_t);
int my_errno;

size_t
my_strlen(const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
7
return ret;

}

int
my_write (int fd, const void *buf, size_t len)
{
int ret;
asm volatile ("int $0x80" "=a" (ret)
"O"™ (SYS_write), "b" (fd), "c" (buf), "d" (len) : "memory");
if (ret < 0) {
my_errno = —-ret;
return -1;
}
return ret;

}

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
my_write (1, greeting, my_strlen(greeting));

}

void
__libc_start_main(int (*mainp) (int, char **, char *¥*),
int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80"™ :: "a" (SYS_exit), "b" (0));
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#include <sys/syscall.h>
typedef unsigned long size_t;
int my_write(int, const void *, size_t);

static size_t
my_strlen(const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
;
return ret;

}

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
my_write (1, greeting, my_strlen(greeting));

}

void

__libc_start_main(int (*mainp) (int, char **, char *¥*),

int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit),

"b" (O));
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#include <dlfcn.h>
#include <sys/syscall.h>

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
size_t (*my_strlen) (const char *p);
int (*my_write) (int, const void *, size_t);

void *handle = dlopen ("dest/libmy.so", RTLD_LAZY);
if ('handle
|| ! (my_strlen = dlsym(handle, "my_strlen"))
“ ! (my_write = dlsym(handle, "my_write")))
return 1;

my_write (1, greeting, my_strlen(greeting));
return O;

}

void
__libc_start_main(int (*mainp) (int, char **, char *¥*),
int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit), "b" (0));
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#include <sys/syscall.h>
typedef unsigned long size_t;

int my_write(int, const void *, size_t);
size_t my_strlen(const char *p);

const char greeting[] = "hello world\n";
int

main (int argc, char **argv, char **envp)
{

my_write (1, greeting, my_strlen(greeting));

}

void

__libc_start_main(int (*mainp) (int, char **, char **),

int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit),

"o (0)) ;
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typedef unsigned long size_t;

size_t
my_strlen (const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
14

return ret;
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#include <sys/syscall.h>
typedef unsigned long size_t;
int my_errno;

int

my_write (int fd, const void *buf, size_t len)

{

int ret;
asm volatile ("pushl %%ebx\n" // older gcc before version 5
"\tmovl %2, %%ebx\n" // won’t allow direct use of
"\tint $0x80\n" // %ebx in PIC code
"\tpopl %%ecbx"
"=a" (ret)
"O" (SYS_write), "g" (fd), "c" (buf), "d" (len) : "memory");

if (ret < 0) {
my_errno = —-ret;
return -1;

}

return ret;
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.file "hellol.c"

.text

.globl my_errno

.bss

.align 4

.type my_errno, @object

.size my_errno, 4
my_errno:

.Zero 4

.text

.globl my_strlen

.type my_strlen, @function
my_strlen:

pushl %ebp

mov1l %esp, %ebp
subl $16, %esp
movl $0, —4(%ebp)
Jjmp .L2
.L3:
addl $1, -4 (%ebp)
L2
movl 8 (%ebp), %edx
movl -4 (%ebp), %eax
addl %$edx, %eax
movzbl (%eax), %eax
testb %al, %al
jne .L3
movl -4 (%ebp), %eax
leave
ret
.size my_strlen, .-my_strlen

.globl my_write

.type my_write, @function
my_write:

pushl %ebp

movl %esp, %ebp
pushl $ebx
subl $16, %esp
movl $4, %eax
movl 8 (%ebp), %ebx
movl 12 (%ebp), %ecx
movl 16 (%ebp), %edx
#APP
# 36 "hellol.c" 1
int $0x80
# O nwn 2
#NO_APP
movl %$eax, -8 (%ebp)
cmpl $0, -8 (%ebp)
jns .L6
movl -8 (%ebp), %eax
negl $eax
movl %$eax, my_errno
movl $-1, %eax
Jjmp L7
.L6:
movl -8 (%ebp), %eax
L7
movl -4 (%ebp), %ebx
leave
ret
.size my_write, .-my_write
.globl greeting
.section .rodata

.align 4
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.type greeting, Qobject
.size greeting, 13
greeting:
.string "hello world\n"
.text
.globl main
.type main, @function
main:
pushl $ebp
movl $esp, %ebp
pushl Sgreeting
call my_strlen
addl $4, %esp
pushl %eax
pushl Sgreeting
pushl s1
call my_write
addl $12, %esp
movl $0, %eax
leave
ret
.size main, .-main
.globl _ libc_start_main
.type _ libc_start_main, @function
_ libc_start_main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
movl 12 (%ebp), %eax
addl $1, %eax
leal 0(,%eax,4), %edx
movl 16 (%ebp), %eax
addl $edx, %eax
subl $4, %esp
pushl $eax
pushl 16 (%ebp)
pushl 12 (%ebp)
movl 8 (%ebp), %eax
call *$eax
addl $16, %esp
movl $1, %eax
movl $0, %edx
movl %$edx, %ebx
#APP
# 57 "hellol.c" 1
int $0x80
# O mwn 2
#NO_APP
nop
movl -4 (%ebp), %ebx
leave
ret
.size _ libc_start_main, .—_ libc_start_main
.ident "GCC: (GNU) 14.2.1 20250207"
.section .note.GNU-stack,"", @progbits
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.file "hello4d.c"

.text

.globl greeting

.section .rodata

.align 4

.type greeting, Qobject

.size greeting, 13
greeting:

.string "hello world\n"

.text

.globl main

.type main, @function

main:
leal 4 (%$esp), %ecx
andl $-16, %esp
pushl -4 (%ecx)
pushl $ebp
movl %$esp, %ebp
pushl $ecx
subl $4, %esp
subl $12, %esp
pushl Sgreeting
call my_strlen
addl $16, %esp
subl $4, %esp
pushl %eax
pushl $Sgreeting
pushl $1
call my_write
addl $16, %esp
movl $0, %eax
movl -4 (%ebp), %ecx
leave
leal -4 (%ecx), %esp
ret
.size main, .-main
.globl _ libc_start_main
.type _ libc_start_main, @function
_ libc_start_main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
movl 12 (%ebp), %eax
addl $1, %eax
leal 0(,%eax,4), %edx
movl 16 (%ebp), %eax
addl $edx, %eax
subl $4, %esp
pushl $eax
pushl 16 (%ebp)
pushl 12 (%ebp)
movl 8 (%ebp), %eax
call *Seax
addl $16, %esp
movl $1, %eax
movl $0, %edx
movl %$edx, %ebx
#APP
# 20 "hellod.c" 1
int $0x80
# O mwn 2
#NO_APP
nop

movl -4 (%ebp), %ebx
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leave

ret

.size _ libc_start_main, .—-_ libc_start_main
.ident "GCC: (GNU) 14.2.1 20250207"

.section .note.GNU-stack,"", @progbits
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.file "mywrite.c"

.text

.globl my_errno

.bss

.align 4

.type my_errno, @object

.size my_errno, 4
my_errno:

.Zero 4

.text

.globl my_write

.type my_write, @function
my_write:

pushl %ebp

mov1l %esp, %ebp
subl $16, %esp

movl $4, %eax

movl 12 (%ebp), %ecx
movl 16 (%ebp), %edx

#APP
# 11 "mywrite.c" 1
pushl %ebx
movl 8 (%ebp), $ebx

int $0x80
popl %ebx
# O nwn 2
#NO_APP
movl %eax, —4(%ebp)
cmpl $0, -4 (%ebp)
jns .L2
movl -4 (%ebp), %eax
negl $eax
movl %$eax, my_errno
movl $-1, %eax
Jjmp .L3
.L2:
movl -4 (%ebp), %eax
.L3:
leave
ret
.size my_write, .-my_write

.ident "GCC: (GNU) 14.2.1 20250207"

.section .note.GNU-stack,"", @progbits
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.file
.text
.globl
.bss

.align 4

.type
.size
my_errno:
.Zero
.text
.globl
.type
my_write:
pushl
movl
pushl
subl
call
addl
movl
movl
movl
#APP

# 11 "mywrite.c"

"mywrite.c"
my_errno
my_errno, @object
my_errno, 4

4

my_write
my_write, @function

%ebp
%esp, %ebp
%ebx

$16, %esp
__x86.get_pc_thunk.bx
$_GLOBAL_OFFSET_TABLE_, %ebx
$4, %eax

12 (%ebp), %ecx

16 (%ebp), %edx

1

pushl %ebx

movl 8 (%ebp), $ebx
int $0x80

popl %ebx

# O mn 2
#NO_APP
movl $eax, -8 (%ebp)
cmpl $0, —8(%ebp)
jns L2
movl -8 (%ebp), %eax
negl %eax
movl $eax, %edx
movl my_errno@GOT (%$ebx), %eax
movl %$edx, (%eax)
movl $-1, %eax
Jjmp .L3
L2
movl -8 (%ebp), %eax
.L3:
movl -4 (%ebp), %ebx
leave
ret
.size my_write, .-my_write
.section .text.__ x86.get_pc_thunk.bx,

bx, comdat

.globl

__x86.get_pc_thunk.bx

.hidden __ x86.get_pc_thunk.bx

.type

__x86.get_pc_thunk.bx, @function

_ _x86.get_pc_thunk.bx:

movl (%esp), %ebx

ret

.ident "GCC: (GNU) 14.2.1 20250207"
.section .note.GNU-stack,"", @progbits

"axG", @progbits,__ .

x86.get_pc_thunk.
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* Lab 2 due Wednesday
* Midterm review section Friday

¢ Midterm exam in class next Monday May 5

- Open note, but no textbook or electronic devices
- Bring lecture note printouts
- SCPD must register exam monitor or show up in person

@ Malloc and fragmentation

@ Exploiting program behavior

(no need to request permission to show up in person) © Allocator designs
- Please remind us if you need OAE arrangements
- Please send us your exam monitor if you are a non-SCPD with @ User-level MMU tricks

permission to take the exam under SCPD rules. (SCPD won’t send
the exam to your monitor, so we have to do it directly.)

* My office hours this Friday 3pm, not Monday

- Come with questions for midterm
- I'llalso monitor Lectures+Exams tag on edstem

© Garbage collection
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Dynamic memory allocation Why is it hard?

e Almost every useful program uses it
- Gives wonderful functionality benefits
> Don’t have to statically specify complex data structures e Easy without free: set a pointer to the beginning of some big
> Can have data grow as a function of input size chunk of memory (“heap”) and increment on each allocation:
> Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

e Satisfy arbitrary set of allocation and frees.

heap (free memory)

. . allocation 1
* Today: how to implement it _—

- Lecture based on [Wilson]

current free position

* Problem: free creates holes (“fragmentation”)

* Some interesting facts: Result? Lots of free space but cannot satisfy request!

- Two or three line code change can have huge, non-obvious impact
on how well allocator works (examples to come)

- Proven: impossible to construct an "always good" allocator

- Surprising result: memory management still poorly understood

3/41 4/41

More abstractly What is fragmentation really?

freelist
¢ What an allocator must do? E—’E—’E—PE—)NULL ¢ Inability to use memory that is free
- Track which parts of memory in use, which parts are free e Two factors required for fragmentation
- Ideal: no wasted space, no time overhead 1. Different lifetimes—if adjacent objects die at different times, then
* What the allocator cannot do? fragmentation:

- Control order of the number and size of requested blocks
- Know the number, size, or lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

> If all objects die at the same time, then no fragmentation:

malloc(20)? 20 10 20 10 20

2. Different sizes: If all requests the same size, then no fragmentation

« The core fight: minimize fragmentation (that’s why no external fragmentation with paging):

- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

5/41 6/41



Important decisions Impossible to “solve” fragmentation

* Placement choice: where in free memory to put a requested
block?

- Freedom: can select any memory in the heap

- Ideal: put block where it won’t cause fragmentation later

(impossible in general: requires future knowledge)

» Split free blocks to satisfy smaller requests?

- Fights internal fragmentation

- Freedom: can choose any larger block to split

- One way: choose block with smallest remainder (best fit)

* Coalescing free blocks to yield larger blocks

20

10

30

- Freedom: when to coalesce (deferring can save work)

 ——

30

30

- Fights external fragmentation

Pathological examples Pathological examples

* Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?

e Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

7/41

9/41

¢ If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs

- The reason? There cannot be a best allocator

¢ Theoretical result:
- For any possible allocation algorithm, there exist streams of

allocation and deallocation requests that defeat the allocator and

force it into severe fragmentation.

° How much fragmentation should we tolerate?
- Let M = bytes of live data, n,;, = smallest allocation, nmax = largest -

How much gross memory required?

- Bad allocator: M - (Nmax/Nmin)

> E.g., only ever use a memory location for a single size
> E.g., make all allocations of size nmax regardless of requested size
- Good allocator: ~ M - log(Nmax/Nmin)

e Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

* Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

8/41
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* Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

e Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other

- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk...

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

9/41

e Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

- Data structure: heap is a list of free blocks, each has a header

holding block size and a pointer to the next block

20

I

?

30

I
?

30

I
?

37

- Code: Search freelist for block closest in size to the request.

(Exact match is ideal)

- During free (usually) coalesce adjacent blocks

¢ Potential problem: Sawdust

- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

10/41



e Simple bad case: allocate n, m (n < m) in alternating orders,

free all the ns, then try to allocateann + 1

* Example: start with 99 bytes of memory
- alloc19,21,19,21,19

19 21 19 21 19
- free 19,19, 19:
19 21 19 21 19

- alloc 207 Fails! (wasted space = 57 bytes)

* However, doesn’t seem to happen in practice

Subtle pathology: LIFO FF L FistfitNunces

* Storage management example of subtle impact of simple

decisions

e LIFO first fit seems good:

- Put object on front of list (cheap), hope same size used again
(cheap + good locality)

* But, has big problems for simple allocation patterns:

- E.g., repeatedly intermix short-lived 2n-byte allocations, with
long-lived (n + 1)-byte allocations
- Each time large object freed, a small chunk will be quickly taken,

leaving useless fragment. Pathological fragmentation

o Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one
e LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality
e Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)
* FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

11/41 12/41

e First fit sorted by address order, in practice:

- Blocks at front preferentially split, ones at back only split when no
larger one found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!
* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

* Suppose memory has free blocks: = I

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

13/41 14/41

e First fit sorted by address order, in practice:

- Blocks at front preferentially split, ones at back only split when no * Worst-fit:
larger one found before them

- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

* Suppose memory has free blocks: =

- If allocation ops are 10 then 20, best fit wins

- When is FF better than best fit?

- Suppose allocation ops are 8, 12, then 12 = first fit wins

5]

- Strategy: fight against sawdust by splitting blocks to maximize
leftover size
- In real life seems to ensure that no large blocks around

o Next fit:

- Strategy: use first fit, but remember where we found the last thing
and start searching from there

- Seems like a good idea, but tends to break down entire list

¢ Buddy systems:
- Round up allocations to power of 2 to make management faster
- Result? Heavy internal fragmentation

14/41 15/41



¢ So far we’ve treated programs as black boxes.

* Most real programs exhibit 1 or 2 (or all 3) of the following
patterns of alloc/dealloc:

- Ramps: accumulate data monotonically over time

24
(%)
[

)
>

e

- Peaks: allocate many objects, use briefly, then free all

@ User-level MMU tricks é /—\/_\/_L/_\\

© Garbage collection - Plateaus: allocate many objects, use for a long time

A

vl \

I

@ Malloc and fragmentation
@ Exploiting program behavior

© Allocator designs

b

bytes
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Pattern 1: ramps Pattern 2: peaks

)

trace of gcc compllmg with full optimization

Bytes in use
\
\

Bytes in use

time
trace from an LRU simulator

* Peaks: allocate many objects, use briefly, then free all

- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

* In a practical sense: ramp = no free!
- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

18/41 19/41

Exploiting peaks Pattern 3: Plateaus

* Peak phases: allocate a lot, then free everything

- Change allocation interface: allocate as before, but only support 9
free of everything all at once z
- Called “arena allocation”, “obstack” (object stack), or @
alloca/procedure call (by compiler people) o
>

* Arena = a linked list of large chunks of memory o L~ ~——

- Advantages: alloc is a pointer increment, free is “free” -
No wasted space for tags or list pointers time

trace of perl running a string processing script

64k 64k
¢ int * Plateaus: allocate many objects, use for a long time
ree pointer - What happens if overlap with peak or different plateau?
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* Segregation = reduced fragmentation:

- Allocated at same time ~ freed at same time o Malloc and fragmentation
- Different type ~ freed at different time
HEEEN -—’| - @ Exploiting program behavior

MM — F—(I T | © Allocator designs

* Implementation observations:

- Programs allocate a small number of different sizes @ User-level MMU tricks
- Fragmentation at peak usage more important than at low usage

- Most allocations small (< 10 words) (5] Garbage collection

- Work done with allocated memory increases with size

- Implications?

22/41 23/41

Slab allocation [Bonwick] Simple, fast segregated free lists

* Kernel allocates many instances of same structures 1 1
- E.g.,a 1.7 kB task_struct for every process on system

Often want contiguous physical memory (for DMA)

Slab allocation optimizes for this case:
- Aslab is multiple pages of contiguous physical memory
- A cache contains one or more slabs

* Array of free lists for sm iz ree for larger
- Each cache stores only one kind of object (fixed size) ay of free lists for small sizes, tree for large

- Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page

Each slab is full, empty, or partial

* E.g.,need new task_struct? * Pro: segregate sizes, no size tag, fast small alloc
- Lookin the task_struct cache » Con: worst case waste: 1 page per size even wj/o free,
- Ifthereis a partial slab, pick free task_struct in that After pessimal free: waste 1 page per object
- Else, use empty, or may need to allocate new slab for cache * TCMalloc [Ghemawat] is a well-documented malloc like this
* Advantages: speed, and no internal fragmentation - Also uses “thread caching” to reduce coherence misses
24/41 25/41

Typical space overheads Getting more space from OS

* On Unix, can use sbrk
* Free list bookkeeping and alignment determine minimum - E.g., to activate a new zero-filled page:
allocatable size:

. e . . stack /* add nbytes of valid virtual address space */
¢ If not implicit in page, must store size of block void *get_free_space(size_t nbytes) {
. . . id *p = sbrk(nbytes);
* Must store pointers to next and previous freelist element Z;l 10y P (ioﬁd(’:)y_if)
strk error("virtual memory exhausted");
L |12 +—| 16 > return p;
¢ ¢ heap }
T 4 byte alignment: addr%4=0 |
0x40£0 0x40fc r/o data
* Allocator doesn’t know types + code
- Must align memory to conservative boundary * For large allocations, sbrk a bad idea
* Minimum allocation unit? Space overhead when allocated? - May want to give memory back to OS
[demo mtest] - Can’t with sbrk unless big chunk last thing allocated

- So allocate large chunk using mmap’s MAP_ANON

26/41 27/41



° Resuming after fault lets us emulate many things
@ Malloc and fragmentation - “All problems in CS can be solved by another layer of indirection”

* Example: sub-page protection

Exploiting program behavior
@ Exp &Prog * To protect sub-page region in paging system:

© Allocator designs r/o

- Set entire page to most restrictive permission; record in PT
@ User-level MMU tricks

write —| r/o —— write fault

© Garbage collection - Any access that violates permission will cause a fault
- Fault handler checks if page special, and if so, if access allowed
- Allowed? Emulate write (“tracing”), otherwise raise error

28/41 29/41

More fault resumption examples Not just for kernels

e Emulate accessed bits:
- Set page permissions to “invalid”.

- On any access will get a fault: Mark as accessed e User-level code can resume after faults, too. Recall:
* Avoid save/restore of floating point registers - mprotect - protects memory
- Make first FP operation cause fault so as to detect usage - sigaction - catches signal after page fault
* Emulate non-existent instructions: - Return from signal handler restarts faulting instruction
- ?ive instan illegal opcode; OS fault handler detects and emulates + Many applications detailed by [Appel & Li]
ake instruction - - e Example: concurrent snapshotting of process
* RunOSontopofanotheros! '’ ,\; .} ......... - Mark all of process’s memory read-only with mprotect
- Slam OS into normal process

privileged - One thread starts writing all of memory to disk
- - Other thread keeps executing
- On fault - write that page to disk, make writable, resume

- When does something “privileged,” real 0S
gets woken up with a fault.

- If operation is allowed, do it or emulate it; otherwise kill guest
- IBM’s VM/370. Vmware (sort of)
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Distributed shared memory Persistent stores
page table " Remo.fe * ldea: Objects that persist across program invocations
- machine(s) - E.g., object-oriented database; useful for CAD/CAM type apps

e Achieve by memory-mapping a file
>< - Write your own “malloc” for memory in a file

—] * But only write changes to file at end if commit

- 1 - Use dirty bits to detect which pages must be written out
- Oremulate dirty bits with mprotect/sigaction (using write faults)

* On 32-bit machine, store can be larger than memory

- Butsingle run of program won’t access > 4GB of objects

- Keep mapping of 32-bit memory pointers «» 64-bit disk offsets
- But, can use the same idea to go anywhere! Even to another - Use faults to bring in pages from disk as necessary

computer. Page across network rather than to disk. Faster, and
allows network of workstations (NOW)

e Virtual memory allows us to go to memory or disk

- After reading page, translate pointers—known as swizzling
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@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

34/41

Concurrent garbage collection Heap overflow detection

* Idea: Stop & copy, but without the stop
- Mutator thread runs program, collector concurrently does GC
* When collector invoked:

- Protect from space & unscanned to space from mutator

- Copy objects in registers into to space, resume mutator

- All pointers in scanned to space point to to space

- If mutator accesses unscanned area, fault, scan page, resume

scanned |unscanned
area area

1 2 3| 4 5

from space

6 § mutator faults
: on access

o spéce
(See [Appel & Li].)
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Heap overflow detection 2 Reference counting

* Mark page at end of heap inaccessible
- mprotect (heap_limit, PAGE_SIZE, PROT_NONE);
* Program will allocate memory beyond end of heap

* Program will use memory and fault

- Note: Depends on specifics of language
- But many languages will touch allocated memory immediately

Invoke garbage collector
- Must now put just allocated object into new heap

Note: requires more than just resumption

- Faulting instruction must be resumed
- But must resume with different target virtual address
- Doable on most architectures since GC updates registers

38/41

¢ In safe languages, runtime knows about all pointers
- So can move an object if you change all the pointers

* What memory locations might a program access?
- Any globals or objects whose pointers are currently in registers
- Recursively, any pointers in objects it might access
- Anything else is unreachable, or garbage; memory can be re-used

* Example: stop-and-copy garbage collection
- Memory full? Temporarily pause program, allocate new heap

- Copy all objects pointed to by registers into new heap
> Mark old copied objects as copied, record new location

- Start scanning through new heap. For each pointer:
> Copied already? Adjust pointer to new location
> Not copied? Then copy it and adjust pointer
- Free old heap—program will never access it—and continue

35/41

* Many GCed languages need fast allocation

- E.g.,inlisp, constantly allocating cons cells
- Allocation can be as often as every 50 instructions

* Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /* 2 */
char *ret = next_free;
next_free += size;
return ret;

}

¢ But would be even faster to eliminate lines 1 & 2!
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¢ Seemingly simpler GC scheme:
- Each object has “ref count” of pointers to it
- Increment when pointer set to it

- Decremented when pointer killed
(C++ destructors handy—c.f. shared_ptr)

void foo(bar c) {

bar a b;

a=c; // c.refcnt++
b = a; // a.refcnt++
a=0; // c.refcnt--
return; // b.refcnt--

}
- ref count == 0? Free object

* Works well for hierarchical data structures
- E.g., pages of physical memory
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Reference counting pros/cons Ownership types

¢ Circular data structures always have ref count > 0
- No external pointers means lost memory e Another approach: avoid GC by exploiting type system

@ - Use ownership types, which prohibit copies

* You can move a value into a new variable (e.g., copy pointer)
- But then the original variable is no longer usable

@ @ * You can borrow a value by creating a pointer to it

- But must prove pointer will not outlive borrowed value
* Can do manually w/o PL support, but error-prone - And can’t use original unless both are read-only (to avoid races)
* Potentially more efficient than real GC * Ownership types available now in Rust language
- No need to halt program to run collector
- Avoids weird unpredictable latencies
* Potentially less efficient than real GC
- With real GC, copying a pointer is cheap

- With refcounts, must update count each time & possibly take lock
(but C++11 std::move can avoid overhead)

- First serious competitor to C/C++ for OSes, browser engines
e C++11 does something similar but weaker with unique types

- std::unique_ptr, std: :unique_lock,...
- Can std::move but not copy these
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mtest.c Fri Mar 28 10:27:19 2025

#include <stdio.h>
#include <stdlib.h>

int
main ()
{
char *pl = malloc(l);
char *p2 = malloc(l);
printf ("%$p - %p = %1d\n", p2, pl, p2 - pl);
}



11. I/O and disks



Midterm results
15

10 —

T 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

* Mean: 46.8571, median: 44.0

100
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Midterm results
100% -

J

80%

4
|

20%

e

s

-—T
0%

0 20 44‘.0 60 80 100
» Systems students should insist on a CDF!
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L hamimistivie L outine

» Recall we will have a resurrection final
- Don’t panicif you didn’t do well on midterm
- But make sure you understand all the answers

- There may be questions on same topics on the final

- Be sure to attend lecture for resurrection final if you are not SCPD

e Lab 3 section Friday
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@ PCsystem architecture

@ Driver architecture

© Disks

@ Disk scheduling

© Flash

3/471

Old-school memory and I/0O buses Realistic ~2005 PC architecture

1880Mbps 1056Mbps
————————— ——————

* CPU accesses physical memory over a bus
* Devices access memory over 1/0 bus with DMA
* Devices can appear to be a region of memory

I/Ob

us

4/47

[ I

Advanced
CPU CPU Programable
Interrupt
front- Controller
ide bus
us
AGP quth Main
bus ~ Bridge memory
POl PCI | 1/0
bus IRQs= apic
South
USB =— Bﬁdge ________J
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Modern PC architecture (intel) CPU now entirely subsumes IOH [intel]

® 4094 pins: both memory controller and 128 lanes PCle

USB 2.0
(Supports 12 USB ports
Dual EHCI Controller)

SATA (6 ports)

IDM

Intel® High Definition Intel®
Audio Codec(s) ICH10

PCI Express* x1
Intef® Gigabit Ethernet Phy |— ot

JTAG* (Corporate Only) +——

directly on chip!

LCI

LPC I/

Other ASICs
(Optional)

TPM
(Optional)

==

AMD EPYC is esse lly an SoC

ﬂ

E.g., PCI

Power
Clock Generators

System Management

SMBus 2.0/

———

Pl Flash
roioes  LSPIFlash]

[intel]

2| sy
3
Qo
@D
- 5@
monitor processor @
‘ }—i cache I
graphics bridge/memory -
controller controller EESlicenteliey

L_PCI bus

IDE disk controller

expansion bus
interface

@
@

@
@

L

)

|
0 I—1—exp.e\nsion bus—i—‘

parallel
port

serial
port
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Intel®
Core™ X-series
Processor
Family

8 Gb/s eachx 1

Intel® X299
Chipset

Intel® Rapid Storage
Technology with RAID
Intel® Smart Connect
Technology

Intel® Extreme Tuning p
Utility Support - Optional
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° SRAM - Static RAM
- Like two NOT gates circularly wired input-to-output
- 4-6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory
° DRAM - Dynamic RAM
- A capacitor + gate, holds charge to indicate bit value
- 1transistor per bit - extremely dense storage
- Charge leaks - need slow comparator to decide if bit 1 or 0
- Must re-write charge after reading, and periodically refresh
* VRAM - “Video RAM”
- Dual ported DRAM, can write while someone else reads

9/47

@ PCsystem architecture

@ Driver architecture

© Disks

@ Disk scheduling

© Flash

11/47



Communicating with a device x86 1/0 instructions

* Memory-mapped device registers
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions - not real memory

* Device memory - device may have memory OS can write to
directly on other side of 1/0 bus
* Special I/O instructions

- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- OS can allow user-mode access to 1/O ports at byte granularity

* DMA - place instructions to card in main memory

- Typically then need to “poke” card by writing to register

- Overlaps unrelated computation with moving data over (typically
slower than memory) 1/0 bus
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Example: parallel port (LPT1) Writing a byte to a parallel port [osdev]

* Simple hardware has three control registers:

|D7|Ds|Ds|D4|Ds|DZ|Dl|DO|
read/write data register (port 0x378)

[ BSY | AcK | pap JoFoN[ ERR [ - | - [ - ]
read-only status register (port 0x379;

[ -] -1 - TwrQ]|psL|iNi [ALF [ STR] [Messmer]
read/write control register (port 0x37a)

* Every bit except IRQ corresponds to a pin on 25-pin connector:

<13 OFON
gi:;: <12 PAP
Est <11 BSY
Ground 224 <10 ACK
211 > 9
> 8

2041
1941
1811

Data Out

v
[}
orRrNWAUON

DSL 17«

INI 164 :g
ERR 15» »>
ALF 144

v
s
0
|
x

[image credits: Wikipedia]
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void IDE_ReadSector(int disk, int off, void *buf)

{
outb(0x1F6, disk == 0 ? OxEO : O0xF0); // Select Drive
IDEWait () ;
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low

outb(0x1F4, off >> 8); // LBA mid

outb(0x1F5, off >> 16); // LBA high

outb (0x1F7, 0x20); // Read command

insw(0x1F0, buf, 256); // Read 256 words
}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0)

>
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static inline uint8_t

inb (uint16_t port)

{
uint8_t data;
asm volatile ("inb %wil, %bO" :
return data;

}

"=a" (data) : "Nd" (port));

static inline void
outb (uint16_t port, uint8_t data)
{

asm volatile ("outb %b0, %wl" :
}

: "a" (data), "Nd" (port));

static inline void

insw (uint16_t port, void *addr, size_t cnt)
{

asm volatile ("rep insw" :

: "d" (port)

"+D" (addr), "+c" (cnt)
: "memory");
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void
sendbyte (uint8_t byte)

/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)
delay ();

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */

uint8_t ctrlval = inb (0x37a);

outb (0x37a, ctrlval | 0x01);

delay ();

outb (0x37a, ctrlval);

15/47

¢ infout instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 21 different port numbers
- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts)
¢ Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;
- 0S must map physical to virtual addresses, ensure non-cachable
e Assign physical addresses at boot to avoid conflicts. PCI:
- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device
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DMA buffers Example: Network Interface Card

Memory buffers

. .
——>—
) 2 _
° -~ Network link
' b — T~
:8 '
Adaptor
y
Buffer ¢ Link interface talks to wire/fiber/antenna
ﬂ‘:ts“‘*’m‘ - Typically does framing, link-layer CRC
* ldea: only use CPU to transfer control requests, not data * FIFOs on card provide small amount of buffering
¢ Include list of buffer locations in main memory * Bus interface logic uses DMA to move packets to and from
- Device reads list and accesses buffers through DMA buffers in main memory

- Descriptions sometimes allow for scatter/gather 1/0
18/47 19/47

Example: IDE disk read w. DMA Driver architecture

1. device driver is told
to transfer disk data CPU : : : H
o buffer at address X * Device driver provides several entry points to kernel
5. DMA controller 2. device driver tells - Reset, ioctl, output, interrupt, read, write, strategy ...
transfers bytes to disk controller to . . .
buffer X, increasing  transfer C bytes * How should driver synchronize with card?
memory address from disk to buffer . .
and de’Z,easing c at address X cache - E.g., Need to know when transmit buffers free or packets arrive
untilC =0 - Need to know when disk request complete
Sauhenc o 0, DMA [I)rll\f:r{'lzlu?/ }- CPU memory bus —| memo X M :
interrupts CPU to signal ? y y * One approach: Polling
transfer completion controller . .
[ - Sent a packet? Loop asking card when buffer is free
i | : PClbus ) - Waiting to receive? Keep asking card if it has packet
I 3. disk controller initiates - Disk I/0? Keep looping until disk ready bit set
IDE disk DMA transfer . .
° ?
controller 4. disk controller sends Disadvantages of polling?
each byte to DMA

controller
@ @ 20/47 21/47

Driver architecture Interrupt driven devices

* Device driver provides several entry points to kernel * Instead, ask card to interrupt CPU on events
- Reset, ioctl, output, interrupt, read, write, strategy ... - Interrupt handler runs at high priority

* How should driver synchronize with card? - Asks card what happened (xmit buffer free, new packet)
- E.g., Need to know when transmit buffers free or packets arrive - Thisis what most general-purpose OSes do
- Need to know when disk request complete ¢ Bad under high network packet arrival rate

* One approach: Polling - Packets can arrive faster than OS can process them

- Interrupts are expensive
- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and
never make any progress - receive livelock

- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk 1/0? Keep looping until disk ready bit set

* Disadvantages of polling? - Best: Adaptive switching between interrupts and polling
- Can’tuse CPU.for anythlng else while polllng « Very good for disk requests
- Schedule poll in future? High latency to receive packet or process . L.
disk block bad for response time * Rest of today: Disks (network devices in 3 lectures)
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@ PCsystem architecture * Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM

- Drive speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions
© Disks * Disk arm assembly

- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- Onedisk head per recording surface (2x platters)

9 Flash - Sensitive to motion and vibration [Gregg] (demo on youtube)

@ Driver architecture

@ Disk scheduling

23/47 24/47
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Platters divided into concentric tracks

A stack of tracks of fixed radius is a cylinder

Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

Generally only one head active at a time
- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned
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Cylinders, tracks, & sectors Disk positioning system

track t le— spindle
3 C 4
| i
sector s i !
|
3 o
| I
I ]
| i
. |
cylinder ¢ —> |
| |
I
I !

platter

Seek details Seek details

* Head switches comparable to short seeks

)

rotation

read-write
head

- May also require head adjustment
- Settles take longer for writes than for reads - Why?

» Disk keeps table of pivot motor power
- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

1— arm assembly

- But, e.g., ~500 ms recalibration every ~25 min bad for AV

* “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk

» Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

* Disk maps logical sector #s to physical sectors

- Zoning-puts more sectors on longer tracks

- Track skewing-sector 0 pos. varies by track (why?)

- Sparing-flawed sectors remapped elsewhere

* 0S doesn’t know logical to physical sector mapping
Larger logical sector # difference means longer seek time
Highly non-linear relationship (and depends on zone)

0S has no info on rotational positions

Can empirically build table to estimate times
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* Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.
* Aseek consists of up to four phases:

- speedup-accelerate arm to max speed or half way point
- coast-at max speed (for long seeks)

- slowdown-stops arm near destination

- settle-adjusts head to actual desired track

» Very short seeks dominated by settle time (~1 ms)

e Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g
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* Head switches comparable to short seeks

- May also require head adjustment

- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

» Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV
* “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk

29/47

* Disk interface presents linear array of sectors
- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

¢ Disk maps logical sector #s to physical sectors

- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (sequential access speed
- Sparing-flawed sectors remapped elsewhere

e 0S doesn’t know logical to physical sector mapping

- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)

- 0S has no info on rotational positions

- Can empirically build table to estimate times
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Disk interface Disk performance

* Controls hardware, mediates access * Placement & ordering of requests a huge issue
 Computer, disk often connected by bus (e.g., ATA, SCSI, SATA) - Sequential I/0 much, much faster than random

- Long seeks much slower than short ones

- Power might fail any time, leaving inconsistent state

- Multiple devices may contentd for bus

¢ Possible disk/interface features:
/ ¢ Must be careful about order for crashes

* Disconnect from bus during requests - More on this in next two lectures

* Command queuing: Give disk multiple requests

e Try to achieve contiguous accesses where possible
- Disk can schedule them using rotational information

- E.g., make big chunks of individual files contiguous
* Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

e Try to order requests to minimize seek times

- OS can only do this if it has multiple requests to order
- Requires disk /O concurrency
* Some disks support write caching - High-performance apps try to maximize 1/O concurrency

- But data not stable—not suitable for all requests o Next: How to schedule concurrent requests
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@ PC system architecture

* “First Come First Served”

. . - Process disk requests in the order they are received
@ Driver architecture q 4

¢ Advantages

© Disks

@ Disk scheduling * Disadvantages

O Flash

33/47 34/47

Scheduling: FCFS FCFS example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
* “First Come First Served” 0 14 37 536567 98 122124 183199
L | | 1l | 1l | |
[

|

- Process disk requests in the order they are received

e Advantages
- Easy to implement
- Good fairness

* Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput
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Shortest positioning time first (SPTF) Shortest positioning time first (SPTF)

* Shortest positioning time first (SPTF) ¢ Shortest positioning time first (SPTF)

- Always pick request with shortest seek time - Always pick request with shortest seek time
* Also called Shortest Seek Time First (SSTF) ¢ Also called Shortest Seek Time First (SSTF)
* Advantages e Advantages

- Exploits locality of disk requests
- Higher throughput
* Disadvantages ¢ Disadvantages

- Starvation
- Don’t always know what request will be fastest

¢ Improvement?

36/47 36/47
Shortest positioning time first (SPTF) SPTF example
e Shortest positioning time first (SPTF) queue = 98, 183, 37, 122, 14, 124, 65, 67
- Always pick request with shortest seek time head starts at 53

* Also called Shortest Seek Time First (SSTF) 0 14 37 536567 98 122124 183199
| | L1l | 1l | |
[

e Advantages

- Exploits locality of disk requests

- Higher throughput
* Disadvantages

- Starvation

- Don’t always know what request will be fastest
* Improvement: Aged SPTF

- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Teff = Tpos -w- Twait

36/47 37/47
“Elevator” scheduling (SCAN) “Elevator” scheduling (SCAN)
* Sweep across disk, servicing all requests passed e Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction - Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests - Switch directions only if no further requests
* Advantages * Advantages

- Takes advantage of locality
- Bounded waiting
* Disadvantages ¢ Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

® CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix
¢ Also called LOOK/CLOOK in textbook
- (Textbook uses [CISCAN to mean scan entire disk uselessly)
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CSCAN example VSCAN(r)

queue 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53 e Continuum between SPTF and SCAN
0 14 37 536567 98 122124 183199
|
[

| | [T | i [ - Like SPTF, but slightly changes “effective” positioning time
| If request in same direction as previous seek: Teg = Tpos
Otherwise: Tesr = Tpos + I+ Trnax
- whenr=0, get SPTF, when r=1, get SCAN
- E.g.,r=0.2 works well

* Advantages and disadvantages
- Those of SPTF and SCAN, depending on how ris set

¢ See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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* Today, people increasingly using flash memory

Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat

@ PC system architecture

@ Driverarchitecture - No mechanical seek times to worry about
) e Limited # overwrites possible
9 Disks - Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases
- Requires flash translation layer (FTL) to provide wear leveling, so
@ Disk scheduling repeated writes to logical block don’t wear out physical block
- FTL can seriously impact performance
e Flash - In particular, random writes very expensive [Birrell]

Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data
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Types of flash memory NAND Flash Overview

¢ Flash device has 2112-byte pages

- 2048 bytes of data + 64 bytes metadata & ECC
- Faster erase and write Blocks contain 64 (SLC) or 128 (MLC) pages
- More errors internally, so need error correction Blocks segregated into 2-4 planes

NOR flash - All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

NAND flash (most prevalent for storage)
- Higher density (most used for storage)

- Faster reads in smaller data units ]
- Can execute code straight out of NOR flash Can read one page at a time
- Significantly slower erases - Takes 25 usec + time to get data off chip
Must erase whole block before programing
- Historically 256 KiB-4 MiB, now trending higher towards 1 GiB
- Erase sets all bits to 1—very expensive (2 msec)
- Programming pre-erased block requires moving data to internal
buffer, then 200 (SLC)-800 (MLC) usec
* Nowadays, most flash drives are TLC, QLC, soon PLC - Note SMR magnetic drives starting to behave like this, too!
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¢ Single-level cell (SLC) vs. Multi-level cell (MLC)

- MLC encodes multiple (two) bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)



Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

Block Size (Pages) 64 128
Read Latency (us) 25 25

Write Latency (us) 200 800

Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0
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FTL straw man: in-memory map

* Keep in-memory map of logical — physical page #
- On write, pick unused page, mark previous physical page free

- Repeated writes of a logical page will hit different physical pages

e Store map in device memory, but must rebuild on power-up

* Idea: Put header on each page, scan all headers on power-up:

(logical page #, Allocated bit, Written bit, Obsolete bit)
- A-W-0O = 1-1-1: free page
- A-W-0 = 0-1-1: about to write page
- A-W-O = 0-0-1: successfully written page
- A-W-O = 0-0-0: obsolete page (can erase block without copying)
* Why the 0-1-1 state? After power failure partly written # free
* What’s wrong still?
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More realistic FTL

o Store the FTL map in the flash device itself

- Add one header bit to distinguish map page from data page

- Logical read may miss map cache, require 2 flash reads

- Keep smaller “map-map” in memory, cache some map pages
* Must garbage-collect blocks with obsolete pages

- Copy live pages to a new block, erase old block
- Always need free blocks, can’t use 100% physical storage

* Problem: write amplification

- Small random writes punch holes in many blocks

- If small writes require garbage-collecting a 90%-full blocks
..means you are writing 10x more physical than logical data!

* Must also periodically re-write even blocks w/o holes
- Wear leveling ensures active blocks don’t wear out first

47/47

FTL straw man: in-memory map

* Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free
- Repeated writes of a logical page will hit different physical pages

e Store map in device memory, but must rebuild on power-up
¢ Idea: Put header on each page, scan all headers on power-up:

(logical page #, Allocated bit, Written bit, Obsolete bit)
- A-W-O = 1-1-1: free page
- A-W-0O =0-1-1: about to write page
- A-W-O = 0-0-1: successfully written page
- A-W-0O = 0-0-0: obsolete page (can erase block without copying)

* Why the 0-1-1 state?
* What’s wrong still?

46 /47

FTL straw man: in-memory map

* Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free
- Repeated writes of a logical page will hit different physical pages

e Store map in device memory, but must rebuild on power-up
¢ Idea: Put header on each page, scan all headers on power-up:

(logical page #, Allocated bit, Written bit, Obsolete bit)
- A-W-0O = 1-1-1: free page
- A-W-0 = 0-1-1: about to write page
- A-W-O = 0-0-1: successfully written page
- A-W-0O = 0-0-0: obsolete page (can erase block without copying)

* Why the 0-1-1 state? After power failure partly written # free
* What’s wrong still?

- FTLrequires a lot of RAM on device, plus time to scan all headers
- Some blocks still get erased more than others (w. long-lived data)
- Blocks with obsolete pages may also contain live pages
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12. File systems



* Disk = First state we’ve seen that doesn’t go away

* File systems: traditionally hardest part of 0OS
- Historically, more papers on FSes than any other single topic

* Main tasks of file system:

- Associate bytes with name (files)
- Associate names with each other (directories)

- So: Where all important state ultimately resides
¢ Slow (milliseconds access vs. nanoseconds for memory)

- Don’t go away (ever) normg':l)légg Processor speed: 2 x/18mo
- Can implement file systems on disk, over network, in memory, in Disk A
non-volatile ram (NVRAM), on tape, w/ paper. isk access time: 7%/yr

- We’ll focus on disk and generalize later

year
* Today: files, directories, and a bit of performance * Huge (64-1,000x bigger than memory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

1/38 2/38

» Disk reads/writes in terms of sectors, not bytes

TLC NAND - Read/write single sector or adjacent groups
Disk Flash DRAM
Smallest write sector sector byte @
Atomic write sector sector byte/word
Random read 8ms 3-10ps 50 ns * How to write a single byte? “Read-modify-write”
Random'wrlte 8 ms 9-11 ps 50ns - Read in sector containing the byte :-:
Sequential read 200 MB/s 550-2500 MB/s > 10 GB/s - Modify that byte
Sequential write 200 MB/s 520-1500 MB/s* > 10GB/s . . . :-:
Cost $0.01-0.02/GB | $0.06-0.10/GB | $1.60-2.50/GiB - Write entire sector back to disk
Persistence Non-volatile Non-volatile Volatile - Key: if cached, don’t need to read in
* Sector = unit of atomicity. I ]

*Flash write performance degrades over time - Sector write done completely, even if crash in middle

(disk saves up enough momentum to complete)

e Larger atomic units have to be synthesized by 0S
3/38 4/38

Some useful trends Files: named bytes on disk

* Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc. * File abstraction:
Seek time and rotational delay improving very slowly - User’s view: named sequence of bytes
- Why? require moving physical object (disk arm) ___. -.:-
* Disk accesses a huge system bottleneck & getting worse fooc int mainQ)|( .. S
- Bandwidth increase lets system (pre-)fetch large chunks for about - FS’s view: collection of disk blocks
the same cost as small chunk. - File system’s job: translate name & offset to disk blocks:

- Trade bandwidth for latency if you can get lots of related stuff. {file oﬁset}—>—>disk address

Desktop memory size increasing faster than typical workloads

- More and more of workload fits in file cache * File operations:
- Disk traffic changes: mostly writes and new data - Create afile, delete afile
* Memory and CPU resources increasing - Read from file, write to file
- Use memory and CPU to make better decisions * Want: operations to have as few disk accesses as possible &
- Complex prefetching to support more 10 patterns have minimal space overhead (group related things)

- Delay data placement decisions to reduce random 10
5/38 6/38



¢ In both settings, want location transparency

o Like page tables, file system metadata are simply data - Application shouldn’t care about particular disk blocks or physical
structures used to construct mappings memory locations

* In some ways, FS has easier job than than VM:

- CPU time to do FS mappings not a big deal (= no TLB)
- Page tables deal with sparse address spaces and random access,
files often denser (0.. . filesize — 1), ~sequentially accessed

- Page table: map virtual page # to physical page #

- File metadata: map byte offset to disk block address
512—>—>8003121 * In some ways FS’s problem is harder:

Directory: map name to disk address of file # - Each layer of translation = potential disk access
y: map - Space a huge premium! (But disk is huge?!?!) Reason?

foo.c—>—>44 Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files <10 KiB, some files many GiB
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Some working intuitions Common addressing patterns

* FS performance dominated by # of disk accesses
- Say each access costs ~10 milliseconds
- Touch the disk 100 extra times = 1 second
- Cando billions of ALU ops in same time!

* Sequential:
- File data processed in sequential order
- By far the most common mode

. - Example: editor writes out new file, compiler reads in file, etc.
* Access cost dominated by movement, not transfer:

seek time + rotational delay + # bytes/disk-bw

* Random access:
- Address any block in file directly without passing through

- 1sector: 5ms+4ms+ 5us (~ 512 B/(100 MB/s)) ~ 9ms predecessors
- 50 sectors: 5ms +4ms +.25ms = 9.25ms - Examples: data set for demand paging, databases
- Can get 50x the data for only ~3% more overhead! * Keyed access
* Observations that might be helpful: - Search for block with particular values
- All blocks in file tend to be used together, sequentially - Examples: associative data base, index
- Allfiles in a directory tend to be used together - Usually not provided by 0S

- Allnames in a directory tend to be used together
9/38 10/38

Problem: how to track file’s data Straw man: contiguous allocation

o “Extent-based”: allocate files like segmented memory

¢ Disk management: - When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block )
what happens if

- Structure tracking a file’s sectors is called an index node or inode file ¢ needs 2
- Inodes must be stored on disk, too ? F: sectors???
* Things to keep in mind while designing file structure: file a/(bqse=1,|en=3) file b (base=5,len=2)

- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files * Pros?

- Want good sequential and good random access
(what do these require?)

* Example: IBM 0S/360

e Cons? (Think of corresponding VM scheme)
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Straw man: contiguous allocation Straw man #2: Linked files

* “Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and
allocate all space at once
- Inode contents: location and size
what happens if
file ¢ needs 2
/: | sectors???
file a (base=1,len=3)  file b (base=5,len=2)

* Example: IBM 0S/360
* Pros?
- Simple, fast access, both sequential and random

e Cons? (Think of corresponding VM scheme)
- External fragmentation

Straw man #2: Linked files Example: DOS FS (simplified)

* Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

how do you find
he last block in a?

v

[ ]
L LT
__J

|
e )
file a (base=1)  file b (base=5)

* Examples (sort-of): Alto, TOPS-10, DOS FAT
* Pros?
- Easy dynamic growth & sequential access, no fragmentation
e Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

FAT discussion FAT discussion

* Entry size = 16 bits
- What’s the maximum size of the FAT?
- Given a 512 byte block, what’s the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?
* Space overhead of FAT is trivial:
- 2 bytes /512 byte block = ~ 0.4% (Compare to Unix)
 Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability
* Bootstrapping: where is root directory?

- Fixed location on disk: | FAT| (op?) FATlroot dirl |

¢ Basically a linked list on disk.
- Keep a linked list of all free blocks

- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

v

[ ]
L LT
| S—

e ,
file a (base=1)  file b (base=5)

how do you find
he last block in a?

* Examples (sort-of): Alto, TOPS-10, DOS FAT

* Pros?

e Cons?
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¢ Linked files with key optimization: puts links in fixed-size “file
allocation table” (FAT) rather than in the blocks.

Directory (5)  FAT (16-bit entries)

a:6 0| free
b: 2 eof
1
eof
3
eof
4

o b WN -

filea

e Still do pointer chasing, but can cache entire FAT so can be

cheap compared to disk access

13/38

e Entry size = 16 bits
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- What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons?

* Space overhead of FAT is trivial:

- 2 bytes /512 byte block = ~ 0.4% (Compare to Unix)

* Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk

- State duplication a very common theme in reliability

* Bootstrapping: where is root directory?

- Fixed location on disk: | FATl (opt) FAT Ir‘oo‘r dirl |

15/38
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Another approach: Indexed files Another approach: Indexed files

e Each file has an array holding all of its block pointers e Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues - Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?) - Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation - Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list - Allocate actual blocks on demand using free list

e Pros? filea file b ¢ Pros? filea file b

- Both sequential and random access easy

* Cons? e Cons?
- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially
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Indexed files Multi-level indexed files (old BSD FS)

* Solve problem of first block access slow

* Issues same as in page tables

with another array, ... Downside?

—— [ 1Tndirect blks
le
ptr2 — [

ptr 13
pir 14

FTCTCI T TTTTTTTT1+—2720 entries! * inode = 14 block pointers + “stuff”
(LT T e doteblocks Tndirect biock
stuff I

2732 file size / 4K blocks - Brr ] _/-

; e file cive = . Ptr 1 1 ptr 2

Large possible file size = lots of unused entries /-
- Large actual size? table needs large contiguous disk chunk —%év- ptr 128/-
¢ Solve identically: small regions with index array, this array otr 4

e I
pir 128 Double indirect block
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Old BSD FS discussion More about inodes

* Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Livesin known location, originally at one side of disk:

* Pros:
- Simple, easy to build, fast access to small files @ ———
- Maximum file length fixed, but large. Inode array| file blocks ... L
¢ Cons: - Now is smeared across it (why?)
- What is the worst case # of accesses?
- What is the worst-case space overhead? (e.g., 13 block file) /\ /\ /\
* An empirical problem: \ 2 A 2 PR
\ \_

- Because you allocate blocks by taking them off unordered freelist,

metadata and data get strewn across disk - Theindex of an inode in the inode array called an i-number

- Internally, the OS refers to files by inumber
- When file is opened, inode brought in memory
- Written back when modified and file closed or time elapses
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* Approach 0: Users remember where on disk their files are
- E.g., like remembering your social security or bank account #

Problem:

e Approach 1: Single directory for entire system

- Put directory at known location on disk
- Directory contains (name, inumber) pairs

- “Spend all day generating data, come back the next morning, want - If one user uses a name, no one else can

to use it.” - F. Corbatd, on why files/dirs invented

Yuck. People want human digestible names
- We use directories to map names to file blocks

Hierarchical U

* Used since CTSS (1960s)

- Unix picked up and used really nicely

- Many ancient personal computers work this way
e Approach 2: Single directory for each user
- Still clumsy, and 1s on 10,000 files is a real pain

e Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs

Next: What is in a directory and why? - File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)
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* Bootstrapping: Where do you start looking?
awk chmod chown - Root directory always inode #2 (0 and 1 historically reserved)

nix

afs bin cdrom dev sbin tmp

* Directories stored on disk just like regular files  Special names:

e Simple, plus speeding up file ops speeds up dir ops!

Special inode type byte set to directory

Users can read just like any other file
(historically)

Only special syscalls can write (why?)
Inodes at fixed disk location

File pointed to by the index may be
another directory

Makes FS into hierarchical tree (what
needed to make a DAG?)

<name.inode#> - Root directory: “/” (fixed by kernel—e.g., inode 2)

<afs,1021> - Current directory: “.” (actual directory entry on disk)

<tmp,1020> - Parent directory: “..” (actual directory entry on disk)

<bin, 1022> * Some special names are provided by shell, not FS:
<cdrom,4123>

- User’s home directory: “~”

<dev,1001> . . .
v - Globbing: “foo.*” expands to all files starting “foo.”

<sbin,1011>

e Using the given names, only need two operations to navigate
the entire name space:
- cd name: move into (change context to) directory name
- 1s: enumerate all names in current directory (context)

23/38 24/38

Unix example: /a/b/c.c Default context: working directory

wun

c.c

Physical organization * Cumbersome to constantly specify full path names

disk - In Unix, each process has a “current working directory” (cwd)
- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

> In modern linux open in libc calls openat(FD_FDCWD, ...) syscall

* Shells track a default list of active contexts

What inode holds file for - A*“search path” for programs you run

a? b? c.c? - Given a search path A : B : C, a shell will check in A, then check in B,
then checkin C

- Can escape using explicit paths: “./foo”

* Example of locality
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Hard and soft links (synonyms) Case study: speeding up FS

* More than one dir entry can refer to a given file

- Unix stores count of pointers
(“hard links”) to inode

- Tomake: “1n foo bar” createsa
synonym (bar) for file foo

foo bar «..

N/

inode #31279
refcount=2

* Soft/symbolic links = synonyms for names

- Point to a file (or dir) name, but object can be deleted from

underneath it (or never even exist).

- Unix implements like directories: inode has special )
“symlink” bit set and contains name of link target ..~

1n -s /bar baz

baz

—

"/1)211”'
refcount=1

- When the file system encounters a symbolic link it automatically
translates it (if possible).

A plethora of performance costs Problem: Internal fragmentation

* Blocks too small (512 bytes)

- File index too large

- Too many layers of mapping indirection
- Transfer rate low (get one block at time)

* Poor clustering of related objects:

Consecutive file blocks not close together
Inodes far from data blocks
Inodes for files in same directory not close together

Poor enumeration performance: e.g., “1s -1”, “grep foo *.c”

e Usability problems
- 14-character file names a pain
- Can’t atomically update file in crash-proof way

* Next: how FFS fixes these (to a degree) [McKusic]

Solution: fragments Clustering related objects in FFS

* BSD FFS:
- Has large block size (4096 or 8192)

- Allow large blocks to be chopped into small ones (“fragments”)

- Used for little files and pieces at the ends of files

y

e
I “urE

* Best way to eliminate internal fragmentation?

- Variable sized splits of course
- Why does FFS use fixed-sized fragments (1024, 2048)?
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¢ Original Unix FS: Simple and elegant:

I inodes

data blocks (512 bytes)

sup'erblock

* Components:
- Data blocks

disk

- Inodes (directories represented as files)

- Hard links

- Superblock. (specifies number of blks in FS, counts of max # of

files, pointer to head of free list)

* Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk

transfers!
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* Block size was too small in Unix FS

* Why not just make block size bigger?

Block size
512

1024
2048
4096

1MB

space wasted
6.9%

11.8%

22.4%

45.6%

99.0%

file bandwidth
2.6%

3.3%

6.4%

12.0%

97.2%

* Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?

- Use idea from malloc: split unused portion.
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* Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1

cylinder group 2\

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group
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Clustering in FFS What does disk layout look like?

Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

file b

Tries to keep inode in same cylinder group as file data:
- (If you look at inode, most likely will look at data too)

file a

Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “1s -1”

Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.

(]

head— >
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- Bad: free list gets jumbled over time. Finding adjacent blocks hard

and slow

FFS: switch to bit-map of free blocks
- 1010101111111000001111111000101100
- Easier to find contiguous blocks.
- Small, so usually keep entire thing in memory
- Time to find free block increases if fewer free blocks

Performance improvements:
- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Better small file performance (why?)

Is this the best we can do? No.

Block based rather than extent based
- Could have named contiguous blocks with single pointer and
length (Linux ext4fs, XFS)
Writes of metadata done synchronously

- Really hurts small file performance

- Make asynchronous with write-ordering (“soft updates”) or
logging/journaling... more next lecture

- Play with semantics (/tmp file systems)
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¢ Each cylinder group basically a mini-Unix file system:

oy
l P superblocks
/?ﬁ%k#neSM

inodes data blocks

° How how to ensure there’s space for related stuff?
- Place different directories in different cylinder groups
- Keep a “free space reserve” so can allocate near existing things

- When file grows too big (1MB) send its remainder to different
cylinder group.
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e Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

* Allocate block close to block x?
- Check for blocks near bmap [x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less
effective
* Trade space for time (search time, file access time)
* Keep areserve (e.g, 10%) of disk always free, ideally scattered
across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free
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¢ Obvious:
- Bigfile cache
Fact: no rotation delay if get whole track.
- How to use?
Fact: transfer cost negligible.
- Recall: Can get 50x the data for only ~3% more overhead
- 1sector: 5ms+4ms+ 5us (= 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms +4ms +.25ms =9.25ms
- How to use?
Fact: if transfer huge, seek + rotation negligible
- LFS: Hoard data, write out MB at a time
Next lecture:
- FFSin more detail
- More advanced, modern file systems
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cylinder
roups

superblocks
e
@ Crash recovery :I ) I ! I :N1 ‘
hopkkeepin
© Soft updates / In%rTaN
[

inodes data blocks ‘

@ FFSin more detail

!
—

@ Journaling
e Each cylinder group has its own:
O F2rs - Superblock
- Bookkeeping information
- Setof inodes
- Data/directory blocks
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Superblock Bookkeeping information
¢ Contains file system parameters ¢ Block map
- Disk characteristics, block size, CG info - Bit map of available fragments
- Information necessary to locate inode given i-number - Used for allocating new blocks/fragments
* Replicated once per cylinder group * Summary info within CG
- At shifting offsets, so as to span multiple platters - #free inodes, blocks/frags, files, directories
- Contains magic number 0x011954 to find replicas if 1st superblock - Used when picking cylinder group from which to allocate
dies (Kirk McKusicK's birthday?) o #free blocks by rotational position (8 positions)
* Contains non-replicated “summary information” - Was reasonable in 1980s when disks weren’t commonly zoned
- # blocks, fragments, inodes, directories in FS - Back then OS could do stuff to minimize rotational delay
- Flag stating if FS was cleanly unmounted
3/42 4/42
Inodes and data blocks Allocation
inode contents . o .
¢ Place inode of new file in same CG as directory
_metadata . ——>data , - . - -
directory data ptr - New directories go in new CG (with above average # free inodes)
5 . ! data ptr — dat e Allocate blocks to optimize for sequential access
i ) j : i%(fir ct ata - Ifavailable, use rotationally close block in same cylinder (obsolete)
_.name / indirect ptr oc : - Otherwise, use block in same CG
i-number double indir data ptr ~ - If CG totally full, find other CG with quadratic hashing
: : : : data ptr data i.e.,if CG#nisfull,tryn+12,n+22n+32,... (mod #CGs)
: \ - Otherwise, search all CGs for some free space
data - Break big files over multiple CGs
. : ¢ Fragment allocation could require moving last block a lot
* Each CG has fixed # of inodes (default one per 2K data) - - (Partial) soution: new stat struct field st_blksize
- Each inode maps offset — disk block for one file - stdio library buffers this much data before writing

- Also contains metadata: permissions, mod times, link count, ...
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* Directories have normal inodes with different type bits

e Contents considered as 512-byte chunks @ FFSin more detail
e Each chunk has direct structure(s) with:

~ 39-bit inumber ® Crashrecovery

- 16-bit size of directory entry

- 8-bit file type (added later) © Soft updates

- 8-bit length of file name
* Coalesce when deleting @ Journaling

- Iffirst direct in chunk deleted, set inumber =0
Periodically compact directory chunks © F2Fs

- But can never move directory entries across chunks
- Recall only 512-byte sector writes atomic w. power failure
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Fixing corruption - fsck Crash recovery permeates FS code

e Must run FS check (fsck) program after crash

. e Have to ensure fsck can recover file system
* Summary info usually bad after crash y

- Scan to check free block map, block/inode counts * Strawman: just write all data asynchronously

- A f fi h
« System may have corruptinodes (not simple crash) ny subset of data structures may be updated before a cras

- Bad block numbers, cross-allocation, etc.
- Do sanity check, clear inodes containing garbage

* Delete/truncate a file, append to other file, crash?

Fields in inodes may be wrong

- Count number of directory entries to verify link count, if no entries
but count # 0, move to lost+found

- Make sure size and used data counts match blocks
* Directories may be bad

- Holesillegal, . and .. must be valid, file names must be unique
- All directories must be reachable
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Crash recovery permeates FS code Crash recovery permeates FS code
e Have to ensure fsck can recover file system e Have to ensure fsck can recover file system
e Strawman: just write all data asynchronously e Strawman: just write all data asynchronously
- Any subset of data structures may be updated before a crash - Any subset of data structures may be updated before a crash

Delete/truncate a file, append to other file, crash? Delete/truncate a file, append to other file, crash?

- New file may reuse block from old - New file may reuse block from old

- 0Old inode may not be updated - Old inode may not be updated

- Cross-allocation! - Cross-allocation!

- Often inode with older mtime wrong, but can’t be sure - Often inode with older mtime wrong, but can’t be sure

Append to file, allocate indirect block, crash?

- Inode points to indirect block
- Butindirect block may contain garbage!

Append to file, allocate indirect block, crash?
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Sidenote: kernel-internal disk write routines Ordering of updates

© Must be careful about order of updates

* BSD has three ways of writing a block to disk - Write new inode to disk before directory entry

1. bdwrite - delayed write - Remove directory name before deallocating inode
- Marks cached copy of block as dirty, does not write it - Write cleared inode to disk before updating CG free map
- Will get written back in background within 30 seconds o Solution: Many metadata updates synchronous (bwrite)
- Used if block likely to be modified again soon - Doing one write at a time ensures ordering

2. bawrite - asynchronous write - Of course, this hurts performance
- Start write but return immediately before it completes - E.g., untar much slower than disk bandwidth
- E.g., use when appending to file and block is full « Note: Cannot update buffers on the disk queue

3. burite - synchronous write - E.g., say you make two updates to same directory block
- Start write, sleep and do not return until safely on disk - But crash recovery requires first to be synchronous
- Must wait for first write to complete before doing second

- Makes bawrite as slow as bwrite for many updates to same block
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* FFS crash recoverability comes at huge cost

- Makes tasks such as untar easily 10-20 times slower @ FFSin more detail
- All because you might lose power or reboot at any time

* Even slowing normal case does not make recovery fast @ Crash recovery
- If fsck takes one minute, then disks get 10x bigger, then 100x ...
* One solution: battery-backed RAM © Soft updates
- Expensive (requires specialized hardware)
- Often don’t learn battery has died until too late @ Journaling
- A pain if computer dies (can’t just move disk)
- If OS bug causes crash, RAM might be garbage O F2Fs

» Better solution: Advanced file system techniques
- Next: two advanced techniques
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First attempt: Ordered updates Ordered updates (continued)

* Want to avoid crashing after “bad” subset of writes « Example: Create file A
¢ Must follow 3 rules in ordering updates [Ganger]: - Block X contains an inode

1. Never write pointer before initializing the structure it points to - Block Y contains a directory block

2. Never reuse a resource before nullifying all pointers to it - Create file Ain inode block X, dir block ¥

3. Never clear last pointer to live resource before setting new one - By rule #1, must write X before writing ¥
 If you do this, file system will be recoverable ° Wesay Y — X, pronounced “Y depends on X”
* Moreover, can recover quickly - Means Y cannot be written before X is written

- Might leak free disk space, but otherwise correct - Xis called the dependee, ¥ the depender

- So start running after reboot, scavenge for space in background e Can delay both writes, so long as order preserved
How to achieve? - Say you create a second file Bin blocks X and Y
- Only have to write each out once for both creates

- Keep a partial order on buffered blocks
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Problem: Cyclic dependencies

* Suppose you create file A, unlink file B, but delay writes

- Both files in same directory block Y & inode block X

* Rule #1: Must write A’s inode before dir. entry (Y — X)
- Otherwise, after crash directory will point to bogus inode

- Worse yet, same inode # might be re-allocated

- So could end up with file name A being an unrelated file

* Rule #2: Must clear B’s dir. entry before writing inode (X — V)
- Otherwise, B could end up with too small a link count
- File could be deleted while links to it still exist

* Otherwise, fsck has to be slow

- Check every directory entry and every inode link count

* Crash might occur between ordered but related writes

- E.g., summary information wrong after block freed
* Block aging

- Block that always has dependency will never get written back
* Solution: Soft updates [Ganger]

- Write blocks in any order
- But keep track of dependencies
- When writing a block, temporarily roll back any changes you can’t

yet commit to disk

- l.e., can’t write block with any arrows pointing to dependees

Cyclic dependencies illustrated

nodeXblock directo\r(v block .
inode #4 (-,#0) | in use ‘ : | original ‘
inode #5 (B#5) | free || modified |
inode #6 (C,#T) )
inode #7

Original organization

inode block  directory block  inodeblock  directory block
inode #4 ¢ (A #4) inode #4 (A #4)
inode #5 (B,#5) inode #5 (-,#5)
inode #6 (C,#T) inode #6 (C,#T)
inode #7 inode #7

Create file A Remove file B

17/42
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Buffer cache Disk
inode block  directory block  inodeblock  directory block
inode #4 (A,#4) inode #4 (-,#0)
inode #5 (-,#0) inode #5 (B,#5)
inode #6 (CH#T) inode #6 (C,#T)
inode #7 inode #7

¢ Created file A and deleted file B

* Now say we decide to write directory block...

e Can’t write file name A to disk—has dependee

...but can temporarily undo whatever change requires the arrow

Breaking dependencies with rollback Breaking dependencies with rollback

19/42
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Buffer cache Buffer cache Disk
inode block  directory block inode block  directory block inode block  directory block  inodeblock  directory block
inode #4 ¢ (A,#4) inode #4 (-,#0) inode #4 (A,#4) inode #4 (-,#0)
inode #5 (-,#0) inode #5 (-,#0) inode #5 (-,#0) inode #5 (-,#0)
inode #6 (C,#T) inode #6 (C#T) inode #6 (CH#T) inode #6 (C,#T)
inode #7 inode #7 inode #7 inode #7

¢ Undo file A before writing dir block to disk

- Even though we just wrote it, directory block still dirty

¢ But now inode block has no dependees

- Can safely write inode block to disk as-is...

* Now inode block clean (same in memory as on disk)
¢ But have to write directory block a second time...

20/42
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Breaking dependencies with rollback Soft updates

Buffer cache Disk i . .
) ] ) . e Structure for each updated field or pointer, contains:
inode block  directory block  inode block  directory block ~ old value
inode #4 (A#4) inode #4 (A,#4) - new value
inode #5 (-, #0) inode #5 (-,#0) - list of updates on which this update depends (dependees)
inode #6 (C#7) inode #6 (CH7) e Can write blocks in any order
. . - But must temporarily undo updates with pending dependencies
inode #7 inode #7 - Must lock rolled-back version so applications don’t see it

« All data stably on disk - Choose ordering based on disk arm scheduling

« Crash at any point would have been safe * Some dependencies better handled by postponing in-memory

updates

- E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap after block pointer cleared on disk
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Simple example Operations requiring soft updates (1)

* Say you create a zero-length file A

1. Block allocation

* Depender: Directory entry for A - Must write: disk block, free map, & pointer (in inode or ind. block)
- Can’t be written untill dependees on disk - Disk block & free map must be written before pointer

* Dependees: - Use Undo/redo on pointer (& possibly file size)
- Inode - must be initialized before dir entry written 2. Block deallocation
- Bitmap - must mark inode allocated before dir entry written - Must write: cleared pointer & free map

* Old value: empty directory entry - Just update free map after pointer written to disk

- Orjustimmediately update free map if pointer not on disk

New value: (filename A, inode #)
e Say you quickly append block to file then truncate

Can write directory block to disk any time You will k - ter to block not written b f the allocated
- Must substitute old value until inode & bitmap updated on disk i d%gzvr:de:g;vszﬂ;jrreo ocknotwritten because ot the aflocate

- Once dir block on disk contains A, file fully created - So both operations together require no disk 1/0!
- Crash before A on disk, worst case might leak the inode
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Operations requiring soft updates (2) Soft update issues

e fsync - sycall to flush file changes to disk
- Must also flush directory entries, parent directories, etc.

3. Link addition (see simple example)
- Must write: directory entry, inode, & free map (if new inode)
- Inode and free map must be written before dir entry
- Use undo/redo on i# in dir entry (because i# 0 ignored in dirent)

e unmount - flush all changes to disk on shutdown
- Some buffers must be flushed multiple times to get clean

* Deleting large directory trees frighteningly fast
- unlink syscall returns even if inode/indir block not cached!
- Dependencies allocated faster than blocks written
- Cap # dependencies allocated to avoid exhausting memory

4. Link removal
- Must write: directory entry, inode & free map (if nlinks==0)
- Clear directory entry immediately
- Must decrement nlinks only after pointer cleared

- Decrement in-memory nlinks after directory written e Useless write-backs
- If directory entry was never written, decrement immediately - Syncer flushes dirty buffers to disk every 30 seconds
(again will know by presence of dependency structure) - Writing all at once means many dependencies unsatisfied
* Note: Quick create/delete requires no disk I/0 - Fix syncer to write blocks one at a time

- Tweak LRU buffer eviction to know about dependencies
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Split into foreground and background parts

* Foreground must be done before remounting FS @ FFSin more detail
- Need to make sure per-cylinder summary info makes sense
- Recompute free block/inode counts from bitmaps - very fast @ Crash recovery
- Will leave FS consistent, but might leak disk space or inodes
¢ Background does traditional fsck operations © Soft updates
- Do after mounting to recuperate free space
- Can be using the file system while this is happening (4] Journaling
- Must be done in forground after a media failure
» Difference from traditional FFS fsck: O F2rs

- May have many, many inodes with non-zero link counts
- Don’t stick them all in lost+found (unless media failure)
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An alternative: Journaling Journaling (continued)

e Group multiple operations into one log entry

) i ) - E.g., clear directory entry, clear inode, update free map—
- Have one logical operation (e.g., create or delete file) either all three will happen after recovery, or none

- Requires multiple separate disk writes

- If only some of them happen, end up with big problems

* Biggest crash-recovery challenge is inconsistency

¢ Performance advantage:
- Logis consecutive portion of disk

* Most of these problematic writes are to metadata - Multiple operations can be logged at disk b/w
e ldea: Use a write-ahead log to journal metadata - Safe to consider updates committed when written to log
- Reserve a portion of disk for a log e Example: delete directory tree
- Write any metadata operation first to log, then to disk - Record all freed blocks, changed directory entries in log
- After crash/reboot, re-play the log (efficient) - Return control to user
- May re-do already committed change, but won’t miss anything - Write out changed directories, bitmaps, etc. in background

(sort for good disk arm scheduling)
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e Must find oldest relevant log entry ¢ Main idea: Think big
- Otherwise, redundant and slow to replay whole log - Big disks, files, large # of files, 64-bit everything
- Worse, old directory/indirect blocks reallocated as data could get - Yet maintain very good performance
corrupted by old replay (because only metadata logged) « Break disk up into Allocation Groups (AGs)
* Use checkpoints - 0.5 -4 GiB regions of disk
- Once all records up to log entry N have been processed and - New directories go in new AGs
affected blocks stably committed to disk.... - Within directory, inodes of files go in same AG
- Record N to disk either in reserved checkpoint location, or in - Unlike cylinder groups, AGs too large to minimize seek times

checkpoint log record

- Unlike cylinder groups, no fixed # of inodes per AG
- Never need to go back before most recent checkpointed N y group P

¢ Advantages of AGs:

M fi f
* Mustalso find end of log - Parallelize allocation of blocks/inodes on multiprocessor

- Typically circular buffer; don’t play old records out of order (independent locking of different free space structures)
- Caninclude begin transaction/end transaction records - Can use 32-bit block pointers within AGs
- Also typically have checksum in case some sectors bad (keeps data structures smaller)
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B+-trees B+-trees continued

KEK
I ¢ See any algorithms book for details (e.g., [Cormen])

P

t

r
/ \\\\\\ * Some operations on B-tree are complex:

Pl k[k[Kk [P Pl kKK - E.g.,lnser.t item |.nt.o completelyfu!l B+-tree
t - May require “splitting” nodes, adding new level to tree

VIV |V VIVIV |fl=<
r .r I r r - Would be bad to crash & leave B+tree in inconsistent state
* XFS makes extensive use of B+-trees

- Indexed data structure stores ordered Keys & Values
- Keys must have an ordering defined on them
- Stored data in blocks for efficient disk access

~+T

¢ Journal enables atomic complex operations

- First write all changes to the log

- If crash while writing log, incomplete log record will be discarded,
) . . and no change made
* For B+-tree with n items, all operations O(log n): - Otherwise, if crash while updating B+-tree, will replay entire log

- Retrieve closest (key, value) to target key k record and write everything

- Insert a new (key, value) pair
- Delete (key, value) pair
32/42 33/42

B+-trees in XFS More B+-trees in XFS

* B+-trees are complex to implement
- But once you’ve done it, might as well use everywhere

Free extents tracked by two B+-trees
* Use B+-trees for directories (keyed on filename hash) 1. start block # s # free blocks

- Makes large directories efficient 2. #free blocks — start block #
* Make each inode a B+-tree

- No more FFS-style fixed block pointers

- Instead, B+-tree maps: file offset — (start block, # blocks)
- Ideally file is one or small number of contiguous extents #1 allows you to allocate near some target

- Allows small inodes & no indirect blocks even for huge files - E.g., when extending file, put next block near previous one
- When first writing to file, put data near inode

Use journal to update both atomically & consistently

#1 allows you to coalesce adjacent free regions

¢ Use B+-tree to map inumber to location of inode
- High bits of inumber specify AG, middle bits are key in per-AG #2 allows you to do best fit allocation
B+-tree, last few bits are position in a block of inodes - Leave large free extents for large files
- B+-tree in AG maps: starting i# — (block #, free-map)
- So free inodes tracked right in leaf of B+-tree
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Contiguous allocation Journaling vs. soft updates

¢ |deally want each file contiguous on disk
- Sequential file /0 should be as fast as sequential disk /0 * Both much better than FFS alone
- Also keeps inodes small (fewer extents to index in B+-tree) * Some limitations of soft updates

- Very specific to FFS data structures (E.g., couldn’t easily add
B-trees like XFS—even directory rename not quite right)

e But how do you know how large a file will be?

¢ ldea: delayed allocation - Metadata updates may proceed out of order (E.g., create A, create
- write syscall only affects the buffer cache B, crash—maybe only B exists after reboot)
- Allow write into buffers before deciding where to place on disk - Still need slow background fsck to reclaim space
- Assign disk space only when buffers are flushed * Some limitations of journaling

e Other advantages: - Disk write required for every metadata operation (whereas

- Short-lived files never need disk space allocated create-then-delete might require no 1/0 with soft updates)

- mmaped files often written in random order in memory, but will be - Possible contention for end of log on multi-processor
written to disk mostly contiguously - fsync must sync other operations’ metadata to log, too

- Write clustering: find other nearby stuff to write to disk
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¢ File system targeted at flash devices with FTL (e.g., SSDs)

@ FFSin more detail
@ Crashrecovery
© Soft updates

@ Journaling

O F2Fs
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- Try to do mostly large sequential writes
- Don’t attempt to do wear leveling (since have FTL anyway)
- See also [Brown]

e Break disk up into:

- Blocks -4 KiB
- Segments - 512 blocks, chosen so one block fits segment summary
- Sections - 2/ segments (default i = 0), unit of log cleaning

- Zones - n sections (default n = 1), if device internally comprises
“subdevices,” send parallel 10 to different zones

* Split device in two parts:

- Main area, in which to perform large sequential writes
- Smaller metadata area has random writes, relies on FTL
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Random Writes VI Multi-stream Sequential Writes
T LA A—’l

Zone | Zone | Zone | Zone
| Section | Section | Section | Section | Section | Section | Section | Section |

&
¢

Segment Number o112 -1 [ [ LIS S I I N N N S|
zu"e'::“: :‘1’ Check | Segment Info. | Node Address [ Segment Summary’ Main Area
uperbloc] point Table Table Area
(cP) (SIT) (NAT) (SSA)
v v - v v -

Sector #0
Hot/Warm/Cold

Node segments

Hot/Warm/Cold
Data segments

CP - Valid SIT/NAT sets, list of orphan (open+deleted) inodes
- Place version # in header+footer, use consistent CP with highest #
SIT - Per-segment block validity bitmap and count
- Two SIT areas and a small journal avoids updating in place
- CP says which SIT area is active
NAT - Translates node numbers to actual block storing node
- Updated like SIT
SSA - Parent info for each block (e.g., inode+offset)
- Just updated in place, CP records active ones to recover
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Multi-head logging

Type | Temp. | Objects
Hot Direct node blocks for directories
Node | Warm | Direct node blocks for regular files
Cold | Indirect node blocks

Hot Directory entry blocks
Warm | Data blocks made by users
Data Data blocks moved by cleaning;
Cold | Cold data blocks specified by users;
Multimedia file data

¢ Two kinds of cleaning foreground and background

- Foreground (only if needed) greedily cleans most free section

- Background just loads blocks into buffer cache and marks dirty
e With no disk head, can efficiently maintain multiple logs

- Group data by similar expected lifetime (see above)

- Means can clean empty or mostly empty sections
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Inode block
[ ] pata

D Direct node
D Indirect node

Metadata

direct pointers

: —mj

inline data
Inline xattrs J
Single-indirect J ‘ m
Double-indirect 1 ’—H
Triple-indirect || L] m
* Small files (<3,692 bytes) stored “inline” inside inode

* Node pointers use NAT table for level of indirection
- Lets F2FS move a node without updating parent pointers
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Application

@ Networking overview
@ Systemsissues
© Implementing networking in the kernel

@ Network file systems
e Goal: two applications on different computers exchange data

* Requires inter-process (not just inter-node) communication

1/47 2/41

The 7-Layer and 4-Layer Models Link Layer: Ethernet

¢ Originally designed for shared medium (coax), now generally
not shared medium (switched)

osl TCP/IP
- * Vendors give each device a unique 48-bit MAC address
7| Application - gy .
Applications - Specifies which card should receive a packet
6 | Presentation ‘Tﬁmr_,')  Ethernet switches can scale to switch local area networks
5 S ’ (thousands of hosts), but not much larger
64 48 48 16 32
4 Transport TCP (host-to-host) Dest Src
 Packet format: | Preamble|  qgr | aadr |TYPC

3 Network P

- Preamble helps device recognize start of packet
2 Data link Network access - CRC allows receiving card to ignore corrupted packets
1 Physical (usually Ethernet) - Body up to 1,500 bytes for same destination

- All other fields must be set by sender’s 0OS

(NIC cards tell the OS what the card’s MAC address is,
Special addresses used for broadcast/multicast)
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Network Layer: Internet Protocol (IP) Principle: Encapsulation

* |P used to connect multiple networks
- Runs over a variety of physical networks—Ethernet, DSL, 5G

* Every host has a unique 4-byte IP address (16-bytes for IPv6)
- (Or at least thinks it has, when there is address shortage)

o Stick packets inside packets
* How you realize packet switching and layering in a system

- E.g., an Ethernet packet may encapsulate an IP packet
- An IP router forwards a packet from one Ethernet to another,

* Packets are routed based on destination IP address

- Address space is structured to make
routing practical at global scale

- E.g., 171.66.*.* goes to Stanford

- So packets need IP addresses in addition
to MAC addresses

¢ Inside IP: UDP or TCP transport layer adds 16-bit port number

- UDP - unreliable datagram protocol, exposes
lost/reordered/delayed (but typically not corrupted) packets

- TCP - transmission control protocol ~ reliable pipe

5/47

creating a new Ethernet packet containing the same IP packet

- In principle, an inner layer should not depend on outer layers (not
always true)

Application

Transport (TCP)

Network level (IP)

o [P ] o [P ]

Link level (eth)
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Network does not deliver packets reliably
G Networking overview - May drop, reorder, delay, corrupt, duplicate packets

0S must implement reliable TCP on top of IP

@ Systemsissues e Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet

© Implementing networking in the kernel - Ifno ack, timeout and try again

Problems?

@ Network file systems
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Unreliability of IP Performance: Bandwidth-delay

* Network delay over WAN will never improve much

Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

© But throughput (bits/sec) is constantly improving

e Can view network as a pipe
0S must implement reliable TCP on top of IP Delay

e Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet Bandwidth ‘ . )

- If no ack, timeout and try again

Problems: - For full utilization want # bytes in flight > bandwidthxdelay

- Low performance over high-delay network (But don’t want to overload the network, either)

(bandwidth is one packet per round-trip time) * What if protocol doesn’t involve bulk transfer?
- Possible congestive collapse of network - E.g., ping-pong protocol will have poor throughput

(if everyone keeps retransmitting when network overloaded) L . .
e Another implication: Concurrency & response time critical for

good network utilization
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A little bit about TCP Lots of OS issues for TCP
* Want to save network from congestion collapse ¢ Have to track unacknowledged data
- Packet loss usually means congestion, so back off exponentially - Keep a copy around until recipient acknowledges it
» Want multiple outstanding packets at a time - Keep timer around to retransmit if no ack
- Get transmit rate up to n-packet window per round-trip - Receiver must keep out of order segments & reassemble
* Must figure out appropriate value of n for network  When to wake process receiving data?
- Slowly increase transmission by one packet per acked window - E.g.,sendercallswrite (fd, message, 8000);
- When a packet is lost, cut window size in half - First TCP segment arrives, but is only 512 bytes

« Connection set up and teardown complicated - Could wake recipient, but useless w/o full message

- Sender never knows when last packet might be lost - TCP sets “PusH” bit at end of 8000 by.te write data
- Must keep state around for a while (2MSL, e.g., 4 min) after close * When to send short segment, vs. wait for more data
- Usually send only one unacked short segment

* Lots more hacks required for good performance ; .
- But bad for some apps, so provide NODELAY option

- Initially ramp n up faster (but too fast caused collapse in ; .
1986 [Jacobson], so TCP had to be changed) e Must ack received segments very quickly

- Fast retransmit when single packet lost - Otherwise, effectively increases RTT, decreasing bandwidth
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o X Sockets ~ bi-directional pipes
Networking overview

Name endpoints by IP address and 16-bit port number

e A connection is thus named by 5 components

- Protocol (TCP), local IP, local port, remote IP, remote port
- Note TCP requires connected sockets, while UDP does not

@ Systemsissues

©® Implementing networking in the kernel

Kernel stores connection state in a protocol control block
structure (PCB)

@ Network file systems - Keep all PCB’s in a hash table
- When packet arrives (if destination IP address belongs to host), use
5-tuple to find PCB and determine what to do with packet
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Socket implementation mbuf details

* Packets made up of multiple mbufs

m_next
* Need to implement layering efficiently 'm_nextpkt . Chainéjd together by m_next )
- Add UDP header to data, Add IP header to UDP packet, ... m—len ) S.UCh .llnked m.bufs called chains
- De-encapsulate Ethernet packet so IP code doesn’t get confused jm_data * Chains linked with n_nextpkt
by Ethernet header m_type | - Linked chains known as queues
* Don’t store packets in contiguous memory ﬁjﬁzs ~~~~~~~~~~~~ . T‘;t:'lgr;gz:';ez‘;uztg:t:“:“;30 data
- Moving data to make room for new header would be slow pkt.len bytes (depends on size of pointers)
¢ BSD solution: mbufs [Leffler] pkt.rcvif - Firstin chain has pkt header
(Note [Leffler] calls m_nextpkt by old name m_act) ext . buf o Cluster mbufs have more data
- Small, fixed-size (256 byte) structures ext free - ext header points to data
- Makes allocation/deallocation easy (no fragmentation) ext.size | fp-dat - Up to 2 KB not collocated with mbuf
* BSD Mbufs working example for this lecture \ - m_dat not used
- Linux uses sk_buffs, which are similar idea / ° m_flags is bitwise or of various bits
optional - E.g., if cluster, or if pkt header used
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Adding/deleting data with mbufs mbuf utility functions

® mbuf *m_copym(mbuf *m, int off, int len, int wait);

* m_data always points to start of data
- Can bem_dat, or ext.buf for cluster mbuf
- Or can point into middle of that area

To strip off a packet header (e.g., TCP/IP)
- Incrementm_data, decrementm_len

- Creates a copy of a subset of an mbuf chain
- Doesn’t copy clusters, just increments reference count
- wait says what to do if no memory (wait or return NULL)

® void m_adj(struct mbuf *mp, int len);

- Trim |1en| bytes from head or (if negative) tail of chain

To strip off end of packet
- Decrementm_len

Can add data to mbuf if buffer not full * Example: Ethernet packet containing IP datagram
Otherwise, add data to chain - Trim Ethernet header using m_adj

- Chain new mbuf at head/tail of existing chain - Callm_pullup (n, sizeof (ip_hdr));
- Access IP header as regular C data structure

® mbuf *m_pullup(struct mbuf *n, int len);

- Put first 1en bytes of chain contiguously into first mbuf
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¢ Each socket fd has associated socket structure with:

Send and receive buffers

Queues of incoming connections (on listen socket)
A protocol control block (PCB)

A protocol handle (struct protosw *)

¢ PCB contains protocol-specific info. E.g., for TCP:
5-tuple of protocol (TCP), source/destination IP address and port

* pr_slowtimo - called every 1/2 sec for timeout processing

Information about received packets & position in stream

Information about unacknowledged sent packets
Information about timeouts
Information about connection state (setup/teardown)

® pr_drain - called when system low on space

® pr_input - returns mbuf chain of data read from socket
e pr_output - takes mbuf chain of data written to socket

® pr_usrreq - multi-purpose user-request hook

- Used for bind/listen/accept/connect/disconnect operations

Used for out-of-band data

e NIC driver figures out protocol of incoming packet

* Enqueues packet for appropriate protocol handler

If queue full, drop packet (can create livelock [Mogul])

* Posts “soft interrupt” for protocol-layer processing

Runs at lower priority than hardware (NIC) interrupt
...but higher priority than process-context kernel code
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¢ Goal: abstract away differences between protocols

- In C++, might use virtual functions on a generic socket struct

- Here just put function pointers in protosw structure

¢ Also includes a few data fields

- domain, type, protocol - to match socket syscall args, so know

which protosw to select
- flags - to specify important properties of protocol

* Some protocol flags:

- ATOMIC - exchange atomic messages only (like UDP, not TCP)
- ADDR - address given with messages (like unconnected UDP)

- CONNREQUIRED - requires connection (like TCP)

- WANTRCVD - notify socket of consumed data (e.g., so TCP can wake

up a sending process blocked by flow control)

e Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

¢ Data fields:
- Interface name (e.g., “eth0”)

- Address list (e.g., Ethernet address, broadcast address, ...

- Maximum packet size
- Send queue
¢ Function pointers

- if_output - prepend header and enqueue packet
- if_start - start transmitting queued packets
- Alsoioctl, timeout, initialize, reset

* An OS must route all transmitted packets

- Machine may have multiple NICs plus “loopback” interface

19/47
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- Which interface should a packet be sent to, and what MAC address

should packet have?

Routing is based purely on the destination address
- Even if host has multiple NICs w. different IP addresses

- (Linux rules let you select among routing tables by source IP)

¢ OS maintains routing table
- Maps IP address & prefix-length — next hop
¢ Use radix tree for efficient lookup

- Branch at each node in tree based on single bit of target

- When you reach leaf, that is your next hop
* Most OSes provide packet forwarding

- Received packets for non-local address routed out another

interface
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e What’s a network file system?
- Looks like a file system (e.g., FFS) to applications
- But data potentially stored on another machine
- Reads and writes must go over the network
- Also called distributed file systems

@ Networking overview

@ Systems issues ¢ Advantages of network file systems

- Easy to share if files available on multiple machines
© Implementing networking in the kernel - Often easier to administer servers than clients
- Access way more data than fits on your local disk

e Net K fil ¢ - Network + remote buffer cache faster than local disk
etwork file systems
/ ¢ Disadvantages

- Network + remote disk slower than local disk
- Network or server may fail even when client OK
- Complexity, security issues
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NFS version 2 [Sandberg] NFS version 2 [Sandberg]

* Background: ND (networked disk) e Background: ND (networked disk)

- Creates disk-like device even on diskless workstations - Creates disk-like device even on diskless workstations

- Can create a regular (e.g., FFS) file system on it - Can create a regular (e.g., FFS) file system on it

- But no sharing—Why? - But no sharing—Why?

- FFS assumes disk doesn’t change under it

* ND idea still used today by Linux NBD * ND idea still used today by Linux NBD

- Useful for network booting/diskless machines, not file sharing - Useful for network booting/diskless machines, not file sharing
* Some Goals of NFS * Some Goals of NFS

- Access same FS from multiple machines simultaneously - Access same FS from multiple machines simultaneously

- Maintain Unix semantics - Maintain Unix semantics

- Crash recovery - Crash recovery

- Competitive performance with ND - Competitive performance with ND
* NFS version 2 protocol specified in [RFC 1094] * NFS version 2 protocol specified in [RFC 1094]
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NFS implementation Stateless operation

e Virtualized the file system with vnodes e Designed for “stateless operation”

- Ersatz virtual functions/interface/trait (like protosw) - Motivated by need to recover from server crashes
* Vnode structure represents an open (or openable) file * Requests are self-contained

e Bunch of generic “vnode operations”: « Requestsare idempotent

- lookup, create, open, close, getattr, setattr, read, write, fsync, .
remove, link, rename, mkdir, rmdir, symlink, readdir, readlink, ... - Unreliable UDP transport

- Called through function pointers, so most system calls don’t care - Client retransmits requests until it gets a reply
what type of file system a file resides on - Writes must be stable before server returns
 NFS vnode operations perform Remote Procedure Calls (RPC) ¢ Can this really work?
- Client sends request to server over network, awaits response
- Each system call may require a series of RPCs
- System mostly determined by RPC [RFC 1831] Protocol
- Uses XDR protocol specification language [RFC 1832]

27/47 28/47



* Designed for “stateless operation”

e Same general architecture as NFS 2
- Motivated by need to recover from server crashes

Specified in RFC 1813 (subset of Open Group spec)

- XDR defines C structures that can be sent over network;
includes tagged unions (to know which union field active)

- Protocol defined as a set of Remote Procedure Calls (RPCs)

* Requests are self-contained

mostg/
* Requests are  idempotent

- Unreliable UDP transport

- Client retransmits requests until it gets a reply * New access RPC

- Writes must be stable before server returns - Supports clients and servers with different uids/gids
¢ Can this really work? e Better support for caching

- Of course, FS not stateless - it stores files - Unstable writes while data still cached at client

- E.g., mkdir can’t be idempotent - second time dir exists - More information for cache consistency

- But many operations, e.g., read, write are idempotent « Better support for exclusive file creation

- Importantly, server doesn’t track open files, so reboot doesn’t
invalidate any file descriptors on clients
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NFSv3 File handles File attributes

struct nfs_fh3 {
/* XDR notation for variable-length array
* with 0-64 opaque bytes: */

opaque data<6d>; struct fattr3 { specdata3 rdev;
’ ftype3 type; uint64 fsid;
* Server assigns an opaque file handle to each file Eiﬁ;gg ﬁcl)gﬁk Eg?ﬁeglﬁiig_
- Client obtains first file handle out-of-band (mount protocol) uint32 uid; nfstime3 mtime;
- File handle hard to guess - security enforced at mount time uint32 gid; nfstime3 ctime;
’ . uint64 size; };
- Subsequent file handles obtained through lookups wint64 used:

* File handle internally specifies file system & file

- Device number, i-number, generation number, ...
- Generation number changes when inode recycled

* Most operations can optionally return fattr3
e Attributes used for cache-consistency

¢ Handle generally doesn’t contain filename
- Clients may keep accessing an open file after it’s renamed
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T

struct create3args {

struct diropargs3 { struct lookup3resok {

nfs_fh3 dir; nfs_fh3 object; diropargs3 where;

filename3 name; post_op_attr obj_attributes; createhow3 how;
}; post_op_attr dir_attributes; };

’ union createhow3 switch (createmode3 mode) {

union lookup3res switch (nfsstat3 status) { case UNCHECKED:
case NFS3_0K: case GUARDED:

lookup3resok resok; sattr3 obj_attributes;
default: case EXCLUSIVE:

post_op_attr resfail; createverf3 verf;

* Maps (directory handle, filename) — handle © UNCHECKED - succeed if file exists

- Client walks hierarchy one file at a time © GUARDED - fail if file exists

- No symlinks expanded or file system boundaries crossed

) . ° EXCLUSIVE - persistent record of create
- Client must expand symlinks
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struct read3resok {
post_op_attr file_attributes;
uint32 count;
bool eof;
opaque data<>;

5>

struct read3args {
nfs_fh3 file;
uint64 offset;
uint32 count;

};

union read3res switch (nfsstat3 status) {
case NFS3_0K:

read3resok resok;
default:

post_op_attr resfail;

» Offset explicitly specified (not implicit in handle)
* Client can cache result

* When is it okay to lose data after a crash?
- Local file system?

___ Witedisaussion ] KFSwawritecall

* When is it okay to lose data after a crash?
- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?
What if server crashes but not client?
Application not killed, so shouldn’t lose previous writes

* NFSv2 addresses problem by having server write data to disk

before replying to a write RPC
- Caused performance problems

* Could NFS2 clients just perform write-behind?
- Implementation issues - used blocking kernel threads on write
- Semantics - how to guarantee consistency after server crash

- Solution: small # of pending write RPCs, but write through on
close; if server crashes, client keeps re-writing until acked

¢ Client can cache blocks of data read and written

e Consistency based on times in fattr3
- mtime: Time of last modification to file

- ctime: Time of last change to inode
(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

o Algorithm: If mtime or ctime changed by another client, flush
cached file blocks
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* When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?

36/47 36/47

union attrstat
switch (stat status) {

struct writeargs {
fhandle file;

VA case NFS_OK:
unsigned offset; fattr attributes;
VAT default:
nfsdata data; void;

3 I

attrstat NFSPROC_WRITE(writeargs) = 8;

¢ On successful write, returns new file attributes
e Can NFSv2 keep cached copy of file after writing it?
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Write race condition NFSv3 Write arguments

ClientA Server ClientB
L%‘E : struct write3args { enum stable_how {
S—— ) ! nfs_fh3 file; UNSTABLE = 0,
: | WwriteBl uint64 offset; DATA_SYNC = 1,
| . e . uint32 count; FILE_SYNC = 2
:‘%g ! stable_how stable; };
! ‘/’: ! opaque data<>;
v v v ¥

* Suppose client overwrites 2-block file
- Client A knows attributes of file after writes A1 & A2 - Don't force clients to flush cache after writes
- Butclient B could overwrite block 1 between the A1 & A2 - Don’t equate cache consistency with crash consistency

- No way for client A to know this hasn’t happened l.e., don’t wait for disk just so another client can see data
- Must flush cache before next file read (or at least open)

* Two goals for NFSv3 write:

38/47 39/47
struct write3resok { struct wcc_attr {
wcc_data file_wcc; uint64 size;
uint32 count; nfstime3 mtime;
stable_how c itted; nfstime3 ctime; . . . . .
writever fg V:ﬁ?? © ¥ B * o Write will change mtime/ctime of a file
}; - “after” will contain new times
struct wcc_data { - With NFSv2, would require cache to be flushed
union write3dres wcc_attr *before; . . .
switch (nfsstat3 status) { post_op_attr after; * With NFSv3, “before” contains previous values
case NFS3_OK: }; - If before matches cached values, no other client has changed file
de;’?;?re“k resok; - Okay to update attributes without flushing data cache
u. H
wcc_data resfail;
};

» Several fields added to achieve these goals

40/47 41/41

Write stability Commit operation

¢ Client cannot discard any UNSTABLE write

* Server write must be at least as stable as requested - If server crashes, data will be lost
e If server returns write UNSTABLE ° COMMIT RPC commits a range of a file to disk
- Means permissions okay, enough free disk space, ... - Invoked by client when client cleaning buffer cache
- But data not on disk and might disappear (after crash) - Invoked by client when user closes/flushes afile
 If DATA_SYNC, data on disk, maybe not attributes * How does client know if server crashed?
* If FILE_SYNC, operation complete and stable - Write and commit return writeverf3

- Value changes after each server crash (can be boot time)
- Client must resend all writes if verf value changes
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Attribute caching NFS version 4 [RFC 3530]

* Much more complicated than version 3
* Close-to-open consistency - NFS2: 27 page spec, NFS3: 126 pages,
- Annoying if writes not visible after a file close NFS4: 275 pages, NFS4.1: 617 pages

(Edit file, compile on another machine, get old version) Designed to run over higher-latency networks
- Nowadays, all NFS opens fetch attributes from server - Support for multi-component lookups to save RTTs

o Still, lots of other need for attributes (e.g., 1s -al) - Support for batching multiple operations in one RPC
» Attributes cached between 5 and 60 seconds - Supp(i.rt for leases (in two slides) and stateful (open, close)
operation

- Files recently changed more likely to change again
- Do weighted cache expiration based on age of file

Designed to be more generic and less Unix-specific

 Drawbacks: - E.g., support for extended file attributes, etc.

Lots of security stuff

NFS 4.1 [RFC5661] has better support for NAS
- Store file data and metadata in different places

- Must pay for round-trip to server on every file open
- Can get stale info when statting a file
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* NFSv2 and v3 poll server for cache consistency

- Client requests attributes (via ACCESS) when file opened
- Attributes validate or invalidate cached copy of file

Hybrid mix of polling and callbacks

- Server agrees to notify client of changes for a limited period of
time - the lease term

- After the lease expires, client must poll for freshness

 Alternative: Server calls back to clients caching file (AFS)
- Invalidate immediately, rather than when cache needed

- Requires server to maintain list of all clients caching info

* Avoids paying for a server round trip in many cases
¢ Advantages paying P y

- Tight consistency, 0 RTT opens of cached files

Server doesn’t need to keep long-term track of callbacks

- E.g., lease time can be shorter than crash-reboot—no need to keep

 Disadvantages callbacks persistently

- Server must maintain a lot of state

- Updates potentially slow
> Must persistently record who is caching things on server
> Must wait for n clients to acknowledge invalidations

- When a client goes down, other clients will block

If client crashes, resume normal operation after lease
expiration
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View access control as a matrix Two ways to slice the matrix

Objects
File 1 |File 2 |File 3 ... |Filen
User 1 |read |write |- - read * Along columns:
- Kernel stores list of who can access object along with object
User 2 |write |write |write |- - - Most systems you’ve used probably do this
Subjects - Examples: Unix file permissions, Access Control Lists (ACLs)
User 3 |- - - read |read

e Along rows:
- Capability systems do this
- More on these later...

User |read |write |read |write |read
m

* Subjects (processes/users) access objects (e.g., files)

* Each cell of matrix has allowed permissions
1/44 2/44

e Each process has a User ID & one or more group IDs

» System stores with each file (in the inode):!

- User who owns the file and group file is in
- Permissions for user, any one in file group, and other

@ Unix protection

@ Unix security holes » Shown by output of 1s -1 command:
user group other owner group
(3] Capability-based protection -rw- rw- r-- dm cs212 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

@ Microarchitectural attacks - User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply

!Note: AFS mostly ignores these bits in favor of different, per-directory

permission bits (per-user/group rlidwka)
3/44 4/44

* Directories have permission bits, too
- Need write permission on a directory to create or delete a file
- Execute permission means ability to use pathnames in the

° Many devices show up in file system
- E.g., /dev/ttyl permissions just like for files

directory, separate from read permission which allows listing  Other access controls not represented in file system
* Special user root (UID 0) has all privileges ¢ E.g., must usually be root to do the following:
- E.g., Read/write any file, change owners of files - Bind any TCP or UDP port number less than 1024
- Required for administration (backup, creating new users, etc.) - Change the current process’s user or group ID

- Mount or unmount most file systems

- Create device nodes (such as /dev/tty1) in the file system
- Change the owner of afile

- Set the time-of-day clock; halt or reboot machine

* Example:
- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc
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e List of Unix users with accounts typically stored in files in /etc

Files passwd, group, and often shadow or master . passwd

* For each user, files contain:

Textual username (e.g., “dm”, or “root”

Numeric user ID, and group ID(s)

One-way hash of user’s password: {salt, H(salt, passwd)}
Should have tunable difficulty d: {d, salt, Hy(salt, passwd)}
Other information, such as user’s full name, login shell, etc.

® /usr/bin/login runs as root

Reads username & password from terminal
Looks up username in /etc/passwd, etc.

Computes H(salt, typed password) & checks that it matches
If matches, sets group ID & user ID corresponding to username

Execute user’s shell with execve system call

* Examples

- ping (historically) - uses raw IP sockets to send/receive ICMP

passwd - changes user’s password
su - acquire new user ID (given correct password)
sudo - run one command as root

* Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait for

root to run a vulnerable job)
Attacker controls many aspects of program’s environment

* Example attacks when running a setuid program

Change PATH or IFS if setuid prog calls system(3)
Set maximum file size to zero (if app rebuilds DB)
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- Close fd 2 before running program—may accidentally send error

message into protected file

* When can process A send a signal to process B with kill?

Allow if sender and receiver have same effective UID

But need ability to kill processes you launch even if suid
So allow if real UIDs match, as well

Can also send SIGCONT w/o UID match if in same session

e Debugger system call ptrace

Lets one process modify another’s memory

Setuid gives a program more privilege than invoking user
So don’t let a process ptrace a more privileged process
E.g., Require sender to match real & effective UID of target
Also disable/ignore setuid if ptraced target calls exec
Exception: root can ptrace anyone
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* Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadov files

e Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and effective UID/GID
- real is user who launched setuid program
- effective is owner/group of file, used in access checks
- Actual rules and interfaces somewhat complicated [Chen]

e Shown as “s” in file listings
- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd

- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit
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* Wireshark needs network access, not ability to delete all files
e Linux subdivides root’s privileges into ~ 40 capabilities, e.g.:
- cap_net_admin - configure network interfaces (IP address, etc.)
- cap_net_raw - use raw sockets (bypassing UDP/TCP)
- cap_sys_boot - reboot; cap_sys_time - adjust system clock
e Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))

* Capabilities don’t survive execve unless bits are set in both
thread & inode (exception: ambient capabilities)

* “Effective” bit in inode acts like setuid for capability
$ 1s -al /usr/bin/dumpcap
-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23 /usr/bin/dumpcap
$ getcap /usr/bin/dumpcap
/usr/bin/dumpcap cap_dac_override,cap_net_admin,cap_net_raw=eip
[Oops, cap_dac_override ~ root! neeeded for USB capture]

* See also: getcap(8), setcap(8), capsh(1)
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@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks
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Even without root or setuid, attackers can trick root owned

processes into doing things...
Example: Want to clear unused files in /tmp
Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;
find identifies files not accessed in 3 days
- executes rm, replacing {3 with file name
m -f -- path deletes file path
- Note “--” prevents path from being parsed as option

What’s wrong here?

find/rm Attacker
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mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

rename (“/tmp/badetc” — “/tmp/x”)

” «

symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

xterm command xterm command

Time-of-check-to-time-of-use [TOCTTOU] bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

Provides a terminal window in X-windows
Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC,

VAT Vi

xterm is root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID

14/44

0666) ;
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find/rm Attacker

mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passwd”)
readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

unlink (“/tmp/badetc/passwd”)
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Provides a terminal window in X-windows
Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;
VA T Vi

What’s wrong here?
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Provides a terminal window in X-windows
Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/x oL %/
* xtermis root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID
- Wrong: Another TOCTTOU bug
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xterm Attacker

creat (“/tmp/log”)
access (“/tmp/1log”) — OK
unlink (“/tmp/10g”)

symlink (“/tmp/log” — “/etc/passwd”)

open (“/tmp/log”)

e Attacker changes /tmp/log between check and use

- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

* OpenBSD man page: “CAVEATS: access() is a potential security

hole and should never be used.”

SSH configuration files Trick question: ptrace bug

* SSH 1.2.12 client ran as root for several reasons:

- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

* Also needed to read & write files owned by user

- Read configuration file ~/.ssh/config
- Record server keys in ~/.ssh/known_hosts

* Software structured to avoid TOCTTOU bugs:

- First bind socket & read root-owned secret key file
- Second drop all privileges—set real, & effective UIDs to user
- Only then access user files

- Idea: avoid using any user-controlled arguments/files until you
have no more privileges than the user

- What might still have gone wrong?

A Linux security hole

* Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

e Consider the following:

- Aand B unprivileged processes owned by attacker

- A ptraces B (works even with Yama, as B could be child of A)
- Aexecutes “su user” to its own identity

- With effective UID (EUID) 0, su asks for password & waits

- While A's EUID is 0, B execs su root
(B’s exec honors setuid—not disabled—since A’s EUID is 0)

- Atypes password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell
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¢ Use new APIs that are relative to an opened directory fd

- openat, renameat, unlinkat, symlinkat, faccessat

- fchown, fchownat, fchmod, fchmodat, fstat, fstatat

- 0_NOFOLLOV flag to open avoids symbolic links in last component
- But canstill have TOCTTOU problems with hardlinks

* Lock resources, though most systems only lock files (and locks

are typically advisory)

e Wrap groups of operations in OS transactions

- Microsoft supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- Afew research projects for POSIX [Valor] [TxOS]
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e Actually do have more privileges than user!

- Bound privileged port and read host private key

Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several had ptrace
implementations that made SSH vulnerable

Once in debugger

- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

Today some linux distros restrict ptrace with Yama
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Previous examples show two limitations of Unix

Many OS security policies subjective not objective
- When can you signal/debug process? Re-bind network port?
- Rules for non-file operations somewhat incoherent
- Even some file rules weird (creating hard links to files)
- Lots of complexities when composing these policies
Correct code is much harder to write than incorrect
- Delete file without traversing symbolic link
- Read SSH configuration file (requires 3 processes??)
- Write mailbox owned by user in dir owned by root/mail
Don’t just blame the application writers
- Must also blame the interfaces they program to
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@ Unix protection

- This time it’s not Unix

@ Unix security holes

o Setting: A multi-user time sharing system

* Wanted Fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

© Capability-based protection

/sysx (kind of like Unix setuid)

@ Microarchitectural attacks
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A confused deputy Recall access control matrix

° What’s wrong here?

o Attacker could overwrite any files in /sysx Objects
- System billing records kept in /sysx/bill got wiped - - - -
- Probably command like fort -o /sysx/bill file.f File 1 |File 2 |File 3 Fle
e Is this a bug in the compiler fort? User 1 [read |write |- - read
- Original implementors did not anticipate extra rights User 2 i i i
- Can’t blame them for unchecked output file Ser< wnte write write - .
. . Subjects
o Compiler is a “confused deputy” ) User 3 |- - - read |read
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits privileges from home files license
- Which source of authority is it serving on any given system call? User |read |write |read |write |read
- OSdoesn’t know if it just sees open ("/sysx/bill", ...) m
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Capabilities Hydra [Wulf]

Slicing matrix along rows yields capabilities

- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the
output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

caller
e Three general approaches to capabilities:
- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

Good history in [Levy]
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0S enforced object modularity with capabilities
- Could only call object methods with a capability
Augmentation let methods manipulate objects
- A method executes with the capability list of the object, not the

Template methods take capabilities from caller
- So method can access objects specified by caller

Machine & programing environment built at CMU in ’70s

- Gave compiler “home files license”—allows writing to anything in
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KeyKOS [Bomberger] Unique features of KeyKOS

* Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

e Single-level store

- Everything is persistent: memory, processes, ...

* Goal: Extreme security, reliability, and availability - System periodically checkpoints its entire state

e Structured as a “nanokernel” - After power outage, everything comes back up as it was
- Kernel proper only 20,000 lines of C, 100KB footprint (may just lose the last few characters you typed)
- Avoids many problems with traditional kernels o “Stateless” kernel design only caches information
- Traditional OS interfaces implemented outside the kernel - All kernel state reconstructible from persistent data

including binary compatibility with existing OSes
( & Y P y & ) ¢ Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system

* Basicidea: No privileges other than capabilities

- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in 00 languages
- Infact, partition system into many processes akin to objects
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KeyKOS capabilities Capability details

» Refered to as “keys” for short

Each domain has a number of key “slots”:

* Types of keys: - 16 general-purpose key slots
- devices - Low-level hardware access - address slot - contains segment with process VM
- pages - Persistent page of memory (can be mapped) - meter slot - contains key for CPU time
- nodes - Container for 16 capabilities - keeper slot - contains key for exceptions

- segments - Pages & segments glued together with nodes
- meters - right to consume CPU time
- domains - a thread context

Segments also have an associated keeper
- Process that gets invoked on invalid reference

. . Meter keeper (allows creative scheduling policies)
* Anyone possessing a key can grant it to others

- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters

Calls generate return key for calling domain
- (Not required—other forms of message don’t do this)
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KeyNIX: UNIX on KeyKOS KeyNIX overview
Domain
Domain
Domain

Device System File System

Btree
Domain

Inode
Domain

Device
Driver
Domain

Device
Driver
Domain

Device
Driver
Domain

* “One kernel per process” architecture

- Hard to crash kernel
- Even harder to crash system

Device
Table
Domain

e Aprocess’s kernel is its keeper
- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper Process >/—\/
y 3% s p and. T Sﬁgg)i?t
» Of course, kernels need to share state Oﬁggl';"e Keeper
X Queue
- Use shared segment for process and file tables Adg;zsni gﬁfce

Sleep
Timer
Domain
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e Every access must be accompanied by a capability

* Everyfileis a different process - For each object, OS stores random check value
- Elegant, and fault isolated - Capability is: {Object, Rights, MAc(check, Rights)}
- Small files can live in a node, not a segment (MAC = cryptographic Message Authentication Code)
- Makes the namei () function very expensive e 0OS gives processes capabi[ities
* Pipesrequire queues - Process creating resource gets full access rights
- This turned out to be complicated and inefficient - Can ask OS to generate capability with restricted rights
- Interaction with signals complicated * Makes sharing very easy in distributed systems
¢ Other OS features perform very well, though * To revoke rights, must change check value
- E.g., forkis six times faster than Mach 2.5 - Need some way for everyone else to reacquire capabilities

¢ Hard to control propagation
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* Adistributed 0OS, based on capabilities of form:
- server port, object ID, rights, check

¢ IPC performance a losing battle with CPU makers

- CPUs optimized for “common” code, not context switches
* Any server can listen on any machine - Capability systems usually involve many IPCs
- Server port is hash of secret

¢ Capability model never fully took off as kernel API
- Kernel won't let you listen if you don’t know secret

- Requires changes throughout application software

* Many types of object have capabilities - Call capabilities “file descriptors” or “Java pointers” and people
- Files, directories, processes, devices, servers (E.g., X windows) will use them

- But discipline of pure capability system challenging so far

- People sometimes quip that capabilities are an OS concept of the
future and always will be

Separate file and directory servers

- Canimplement your own file server, or store other object types in
directories, which is cool .
* But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available

Check is like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights
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» Capability APl in FreeBSD 9
® cap_enter enters a process into capability mode
- Can no longer use absolute pathnames, “. .”, etc.

@ Unix protection

* cap_new turns file descriptors into restricted capabilities @ Unixsecurity holes

- ~60 individual permissions can be restricted per capability
- E.g., disallow f£chmod (which works on read-only fds) © Capability-based protection

* Used by various base system binaries
e Supported by a growing number of applications @ Microarchitectural attacks
* Patches exist to use Capsicum for Chrome’s sandboxing
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Cache timing attacks Speculative execution key to performance

const char *table; unsigned char *arrayl, *array2;
int arrayl_size, array2_size;

int
victim (int secret_byte) int lookup (int input)
{
return table[secret_byte*64]; if (input < arrayl_size)
} return array2[arrayl[input] * 4096];
. return -1;
* Accessing memory based on secret data can leak the data }

e Approach 1: Flush/Evict + Reload
- Share table with victim process (shared lib or deduplication)
- Flush table from cache (c1f1lush instruction, or overflow cache)
- After victim, time reads of table, fast line tells you secret_byte
e Approach 2: Prime + Probe
- No shared memory, but attacker primes cache with its own buffer
- Victim’s table access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data

e CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if array1_size not cached
- Wait to get array1_size from memory before retiring instructions
- Squash incorrectly predicted instructions by reverting registers
- But can’t revert cache state, only registers

* Example: intel Haswell
- Specutatively executes up to 192 micro-ops
- Indexes branch target buffer by bottom 31 bits of branch address
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Spectre attack [Kocher] Many more variants of Spectre

unsigned char *arrayl, *array2;

int arrayl_size, array2_size; « Attack on JavaScript JIT
int lookup (int input) - Malicious JavaScript reads secrets outside of JavaScript sandbox
if (imput < arrayl_size) ¢ eBPF compiles packet filters in kernel (e.g., for tcpdump)
return array2[arrayl[input] * 4096]; - Can generate code to reveal arbitrary kernel memory
y return -1; « Can even use victim code that’s not supposed to be executed

- Mistrain branch predictor on indirect branch
- Speculatively execute arbitrary “spectre gadget” in victim process
- Same cache impact even if gadget execution entirely squashed

e Say attacker supplies input, wants to read array1 [input]
- input can exceed bounds, reference any byte in address space

* Ensure arrayl cached, but array1_size and array2 uncached - Has been used to leak host memory from inside virtual machine
® Flush+reload attack on array2 now reveals array1 [input] o Use other speculation channels
- CPU will likely predict branch taken (don’t usually overflow) - E.g., CPU predicts that previous store does not conflict with a load

- Speculatively load from array2 before seeing arrayl_size
- Reloaded cache line reveals array1 [input]
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Mitigation

* Replace array bounds checks with index masking (used by
Chrome)

- return array2[arrayl[input&Oxffff] * 4096]
- Limits distance of bounds violation

* Place JavaScript sandbox in separate address space

* XOR pointers with type-dependent poison values (in JITs)
- Branch mispredictions on type checks XOR wrong values

* Make CPUs a bit better about leaking state through side
channels

e Insert “gratuitous” memory barriers to prevent speculation on
sensitive data

e Unfortunately general solution still an open problem
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16. Security



* Most people are familiar with discretionary access control

@ Mandatory access control
@ Labels and lattices
© LOMAC

@ SELinux

1/43

MAC motivation Example: Anti-virus software

* Prevent users from disclosing sensitive information (whether
accidentally or maliciously)

- E.g., classified information requires such protection
* Prevent software from surreptitiously leaking data
- Seemingly innocuous software may steal secrets in the background
- Such a program is known as a trojan horse
e Case study: Symantec AntiVirus 10
- Contained a remote exploit (attacker could run arbitrary code)

- Inherently required access to all of a user’s files to scan them
- Can an OS protect private file contents under such circumstances?
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Example: Anti-virus software Example: Anti-virus software

AV AV User Update
Helper Scanner TTY Daemon
_ . \ >
/tmp  UserData Virus DB Network

e Scanner can write your private data to network

* Prevent scanner from invoking any system call that might send
a network messages?

4/43

(DAC)
- Unix permission bits are an example

- E.g., might set file private so that only group friends can read it:
-rw-r--- 1 dm friends 1254 Feb 11 20:22 private

- Anyone with access to information can further propagate that
information at his/her discretion:
$ Mail sigint@enemy.gov < private
* Mandatory access control (MAC) can restrict propagation

- Security administrator may allow you to read but not disclose file

- Not to be confused with Message Authentication Codes and
Medium Access Control, also both “MAC”
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AV User Update
Helper < Scanner — Daemon

N T

/tmp  UserData Virus DB Network

e Scanner - checks for virus signatures
* Update daemon - downloads new virus signatures

* How can OS enforce security without trusting AV software?

- Must not leak contents of your files to network

- Must not tamper with contents of your files
4/43

T~

AV AV User Update
Helper Scanner TTY Daemon
2 > 4
/tmp  UserData Virus DB Network

e Scanner can send private data to update daemon
¢ Update daemon sends data over network
- Can cleverly disguise secrets in order/timing of update requests

* Block IPC & shared memory system calls in scanner?

4/43



Example: Anti-virus software Example: Anti-virus software

T

AV AV User Update AV . User Update
Helper Scanner R Daemon Helper Scanner Daemon

| V4

/tmp . UserData  VirusDB Network /tmp  UserData  VirusDB Network

e Scanner can write data to world-readable file in /tmp e Scanner can acquire read locks on virus database
» Update daemon later reads and discloses file - Encode secret user data by locking various ranges of file
e Update daemon decodes data by detecting locks

- Discloses private data over the network

* Prevent update daemon from using /tmp?

¢ Have trusted software copy virus DB for scanner?
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* Scanner can call setproctitle with user data
- Update daemon extracts data by running ps
* Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

@ Mandatory access control

Labels and lattices
e Scanner can relay data through another process o

- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data © LOMAC
* Disclose data by modulating free disk space

e Can we ever convince ourselves we’ve covered all possible @ SELinux
communication channels?

- Not without a more systematic approach to the problem

5/43 6/43
Bell-La Padula model [BL] Security levels
* View the system as subjects accessing objects e Asecurity level or label is a pair (c, s) where:
- Access control: take requests as input and output decisions - ¢ =classification - E.g., 1 = unclassified, 2 = secret, 3 = topsecret

+ Four modes of access are possible: - s = category-set - E.g., Nuclear, Crypto, Russia, ...

execute - no observation or alteration * (c1,51) dominates (cy,s;) iff c; > c;ands; O s,

- read - observation - Ly dominates L, is sometimes written L; o L, orL; 3 L,
- append - alteration - Labels then form a lattice (partial order with lub & glb)
- write - both observation and modification * Inverse of dominates relation is can flow to, written C
* An access matrix M encodes permissible access types - L1 E Ly (“Ly canflow to L,”) means L, dominates L;
- Asin last lecture, subjects are rows, objects are columns * Subjects and objects are assigned security levels
* The current access set, b, is (subj, obj, attr) triples - level(S), level(O) - security level of subject/object
- Encodes accesses in progress (e.g., open files) - current-level(S) - subject may operate at lower level
- Ataminimum, (S, 0,A) € b requires A permitted by cell Ms o - level(S) bounds current-level(S) (current-level(S) C level(S))

- Since level(S) is max, sometimes called S’s clearance
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Security properties Labels form a lattice [Denning]

Two access control properties with respect to labels:
* The simple security or ss-property (DAC):

- Forany (S,0,A) € b, if Aincludes observation, then level(S) must

dominate level(0), i.e., level(0) C level(S)
- E.g., an unclassified user cannot read a top-secret document

» The star security or x-property (MAC):

- If any subject both observes 0; and modifies 05, then level(0,)

dominates level(0,), i.e., level(0;) C level(O,).

- E.g., no subject can read a top secret file, then write a secret file

- More precisely, given (S, 0,A) € b:
if A= r then level(O) C current-level(S)
if A= a then current-level(S) C level(0)

“no read up”
“no write down”

if A= w then current-level(S) = level(0)

Labels form a lattice [Denning] Labels form a lattice [Denning]

(top-secret, {Nuclear, Crypto})
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C is transitive C is transitive
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Lnet

» Transitivity makes it easier to reason about security

* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

Internet
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(top-secret, {Nuclear, Crypto})
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Internet

Lbug

¢ Transitivity makes it easier to

Lnet

reason about security

e Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

¢ Suppose untrustworthy software reads file
- Process labeled Ly,,g reads file, so must have Ly C Lpyg
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.
s==s

Internet

Lnet

* Transitivity makes it easier to reason about security
¢ Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

* Suppose untrustworthy software reads file

- Process labeled Ly, reads file, so must have Ly E Lyyg
- IfLy C Lpyg @and Ly Z Lyet, it follows that Lyyg Z Lyet.
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C is transitive

G e

LU Lbug

Internet

Lnet

e Transitivity makes it easier to reason about security

* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

e Conversely, a process that can write to the network cannot
read the file
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Straw man MAC implementation No: Covert channels

Take an ordinary Unix system

Put labels on all files and directories to track levels

Each user U assigned a security clearance, level(U), on login

* Determine current security level dynamically

- When U logs in, start with lowest curent-level

- Increase current-level as higher-level files are observed
(sometimes called a floating label system)

- If U’s level does not dominate current-level, kill program
- Kill program that writes to file if current label can’t flow to file label

Is this secure?
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* Example: CPU utilization
- To send a 0 bit, use 100% of CPU in busy-loop
- Tosend a 1 bit, sleep and relinquish CPU
- Repeat to transfer more bits
* Example: Resource exhaustion
- High program allocates all physical memory if bit is 1
- If low program slow from paging, knows less memory available

* More examples: Disk head position, processor cache/TLB
polution,...
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System rife with covert storage channels
- Low current-level process executes another program
- New program reads sensitive file, gets high current-level
- High program exploits covert channels to pass data to low

E.g., high program inherits read-only file descriptor
- Can pass 4-bytes of information to low program in file offset

Other storage channels:
- Exit value, signals, file locks, terminal escape codes, ...

If we eliminate storage channels, is system secure?
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e Observation: Covert channels come from sharing
- If you have no shared resources, no covert channels
- Extreme example: Just use two computers (common in DoD)
* Problem: Sharing needed
- E.g., read unclassified data when preparing classified
* In general, can only hope to bound bandwidth of covert
channels
* One approach: Strict partitioning of resources
- Strictly partition and schedule resources between levels
- Occasionally reapportion resources based on usage [Browne]
- Do so infrequently to bound leaked information
- Approach still not so good if many security levels possible
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* Problem: How to protect integrity

* Sometimes need to prepare unclassified report from classified ) Slfppose text editor gets trojaned, 'betly mOd,'f'es files )
data - Might mess up attack plans even without leaking anything

« Declassification happens outside of traditional access control * Observation: Integrity is the converse of secrecy
model - In secrecy, want to avoid writing to lower-secrecy files

- Present file to security officer for downgrade - Inintegrity, want to avoid writing higher-integrity files

« Job of declassification often not trivial e Use integrity hierarchy parallel to secrecy one

- Now security levelis a {c, i,s) triple, where i = integrity

- <C1,i1,$1> C <C2,i2,$2> iff 1 <G and i1 > iz and $1Csy

- Only trusted users can operate at higher integrity
(which is visually lower in the lattice—opposite of secrecy)

- If you read less authentic data, your current integrity level gets
lowered (putting you up higher in the lattice), and you can no
longer write higher-integrity files

- E.g., Microsoft word saves a lot of undo information
- This might be all the secret stuff you cut from document

- Another bad mistake: Redact PDF using black censor bars over or
under text, leaving text selectable (e.g., [Cluley1], [Cluley2])
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* MAC not widely accepted outside military
LOMAC’s goal: make MAC more palatable

@ Mandatory access control - Stands for Low water Mark Access Control
e Concentrates on Integrity
@ Labels and lattices - More important goal for many settings
- E.g., don’t want viruses tampering with all your files
© LoMAC - Also don’t have to worry as much about covert channels

Provides reasonable defaults (minimally obtrusive)

Has actually had impact
- Originally available for Linux (2.2)
- Now ships with FreeBSD

- Windows introduced similar Mandatory Integrity Control (MIC), but
not actually mandatory

@ SELinux
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LOMAC overview LOMAC defaults

o remote
ttyl 2 ethl ——— management
. link
* Subjects are jobs (essentially processes) Inote: can-flow-to s downward: /bin, /etc, WWW
- Each subject labeled with an integrity number (e.g., 1, 2) opposite of earlier diagram]’ downloads, email
- Higher numbers mean more integrity ttySO 1  eth0 untrusted
(so unfortunately 2 C 1 by earlier notation) N~ external net

Two levels: 1 and 2

Level 2 (high-integrity) contains:
- FreeBSD/Linux files intact from distro, static web server config
- The console, trusted terminals, trusted network

Level 1 (low-integrity) contains

e Security: Low-integrity subjects cannot write to high integrity - NICs connected to Internet, untrusted terminals, etc.
objects ¢ Idea: Suppose worm compromises your web server

- Worm comes from external network — level 1

- Won’t be able to muck with system files or web server config
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- Subjects can be reclassified on observation of low-integrity data

Objects (files, pipes, etc.) also labeled w. integrity level
- Object integrity level is fixed and cannot change

* New objects have level of their creator



The self-revocation problem Self-revocation example

¢ User has high-integrity (level 2) shell

. i . . ® Runs:ps | grep user
* Want to integrate with Unix unobtrusively - Pipe created before ps reads low-integrity data
* Problem: Application expectations - ps becomes tainted, can no longer write to grep
- Kernel access checks usually done at file open time

- Legacy applications don’t pre-declare they will observe
low-integrity data

- An application can “taint” itself unexpectedly, revoking its own [ ppe ]
permission to access an object it created e

level 2 level 2 level 2
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Self-revocation example Self-revocation example
* User has high-integrity (level 2) shell ¢ User has high-integrity (level 2) shell
® Runs:ps | grep user ® Runs:ps | grep user
- Pipe created before ps reads low-integrity data - Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep - ps becomes tainted, can no longer write to grep
level 2 level 2 level 2 level 1 level 2 level 2

VAN

/proc/327
level 1
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o User has high-integrity (level 2) shell

Don’t consider pipes to be real objects
® Runs:ps | grep user

Join multiple processes together in a “job”
- Pipe ties processes together in job
- Any processes tied to job when they read or write to pipe
- So will lower integrity of both ps and grep

- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

level 1 level 2 level 2 .. . .
Similar idea applies to shared memory and IPC

b ‘ e Summary: LOMAC applies MAC to non-military systems

- But doesn’t allow military-style security policies
(i.e., with secrecy, various categories, etc.)
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¢ Problem: Military needs adequate secure systems

@ Mandatory access control - How to create civilian demand for systems military can use?
¢ Idea: Separate policy from enforcement mechanism

e Labels and lattices - Most people will plug in simple DAC policies
- Military can take system off-the-shelf, plug in new policy

* Requires putting adequate hooks in the system
- Each object has manager that guards access to the object
- Conceptually, manager consults security server on each access

© LOMAC

O SELinux * Flask security architecture prototyped in fluke

- Now part of SElinux

Following figures from [Spencer]
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Architecture Challenges

[ Client } * Performance
- Adding hooks on every operation
- People who don’t need security don’t want slowdown

Object Request

~

e Using generic enough data structures

- Object managers independent of policy still need to associate data
structures (e.g., labels) with objects

Object Manager Security Server

Policy Security
Enforcement Policy
Decision!

| * Revocation
ot ) I P - May interact in a complicated way with any access caching
nforcement | olicy . . .
- Once revocation completes, new policy must be in effect

* Kernel mediates access to objects at “interesting” points . i'?%de%‘r‘]?’tg%"mt be allowed to delay revocation completion

|
|
|
| Query
|
|

» Kicks decision up to external (user-level) security server
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Basic flask concepts Creating new object
¢ All objects are labeled with a security context [ Client (SID C) ]
- §ecurity context is an arbitrary string—opaque to object manager (C) s Create Object Request :
in the kernel p [
. —————
* Security contexts abbreviated with security IDs (SIDs) Object Manager | Security Server
- 32-bit integer, interpretable only by security server Objects | SID/Context
- Not valid across reboots (can’t store in file system) [ObJ gl - [ Obj @,] ["(‘fgg ] : Map
- Fixed size makes it easier for object manager to handle | i
¢ Queries to server done in terms of SIDs New SID New‘l SID Policy Logic
- Create (client SID, old obj SID, obj type)? — SID (SID, SID, Obj Type) New SID|Request
S | )

- Allow (client SID, obj SID, perms)? — {yes, no}

Enforcement ! Policy
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Security server interface [Loscocco] Access vector cache (AVC)

int security_compute_av(
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
access_vector_t *allowed, access_vector_t *decided,
__u32 *seqno);

® ssid, tsid - source and target SIDs
® tclass - type of target
- E.g., regular file, device, raw IP socket, TCP socket, ...

¢ Server can decide more than it is asked for

- access_vector_t is a bitmask of permissions
- decided can contain more than requested
- Effectively implements decision prefetching

* seqno used for revocation (in a few slides)
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AVCin a query AVC interface

[ Client (SID C) ]
|
©) Modify Object Request |
' 7 I
i | .
Object Manager | Security Server
Objects ) |
- - SID/Context
Obj (o] ... | Obj o | Map
w 17] |
Access:Query i
AVC . .
Policy L
Access Check — | olicy Logic
(SID, SID, Perms) — -
Accesslkuhng
|
1

Enforcement  Policy
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* Decisions may be cached in AVC entries

* Decisions may implicitly be cached in migrated permissions

- E.g., Unix checks file write permission on open

- But may want to disallow future writes even on open file

- Write permission migrated into file descriptor

- May also migrate into page tables/TLB w. mmap

- Also may migrate into open sockets/pipes, or operations in
progress

* AVC contains hooks for callbacks

- After revoking in AVC, AVC makes callbacks to revoke migrated
permissions

- seqno can be used to ensure strict ordering of policy changes

* Want to minimize calls into security server
® AVC caches results of previous decisions
- Note: Relies on simple enumerated permissions
* Decisions therefore cannot depend on parameters:
X Andy can authorize expenses up to $999.99
X Bob can run processes at priority 10 or higher
¢ Decisions also limited to two SIDs

- Complicates file relabeling, which requires 3 checks:
Source Target Permission checked
Subject SID | Old file SID | Relabel-From

Subject SID | New file SID | Relabel-To

Old file SID | New file SID | Transition-From
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int avc_has_perm_ref (
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
avc_entry_ref_t *aeref);

® avc_entry_ref_t points to cached decision

- Contains ssid, tsid, tclass, decision vec., & recently used info
® aeref argumentis hint

- After first call, will be set to relevent AVC entry

- On subsequent calls speeds up lookup
e Example: New kernel check when binding a socket:

ret = avc_has_perm_ref (
current->sid, sk->sid, sk->sclass,
SOCKET__BIND, &sk->avcr);

- Now sk->avcr is likely to be speed up next socket op
34/43

Secure File Server File System
OSKi File ] Filesystem
4 Label
PSID/Security
Context Map
SID/PSID Inode/PSID
Map Map

Context <—>SID
Security Server _— and Files

* Must label persistent objects in file system
- Persistently map each file/directory to a security context
- Security contexts are variable length, so add level of indirection
- “Persistent SIDs” (PSIDs) - numbers local to each file system

—
o

Inode Table
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* May need to relabel objects
- E.g.,filesin file system
* Processes may also want to transition their SIDs

- Depends on existing permission, but also on program
- SElinux allows programs to be defined as entrypoints

- Thus, can restrict with which programs users enter a new SID
(similar to the way setuid transitions uid on program entry)
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¢ SElinux user is assigned on login, based on rules

# semanage login -1

Login Name SELinux User
__default__ unconfined_u
root root_u

MLS/MCS Range
s0-s0:c0.c255
s0-s0:c0.c255

A user is allowed to assume different roles w. newrole

But roles are restricted by SElinux (not Unix) users

# semanage user -1

SELinux User . SELinux Roles

root staff_r sysadm_r system_r
unconfined_u system_r unconfined_r
user_u user_r
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Example: Loading kernel modules Policy specification

(1) allow sysadm_t insmod_exec_t:file x_file_perms;

(2) allow sysadm_t insmod_t:process transition;

(3) allow insmod_t insmod_exec_t:process { entrypoint execute };
(4) allow insmod_t sysadm_t:fd inherit_fd_perms;

(5) allow insmod_t self:capability sys_module;

(6) allow insmod_t sysadm_t:process sigchld;

1. Allow sysadm domain to run insmod
2. Allow sysadm domain to transition to insmod
. Allow insmod program to be entrypoint for insmod domain

. Letinsmod use CAP_SYS_MODULE (load a kernel module)

3

4. Letinsmod inherit file descriptors from sysadm

5

6. Letinsmod signal sysadm with SIGCHLD when done
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 In practice, SElinux contexts have four parts:

user role type level
—— ——
system_u : system_r : sshd_t : sO
e useris not Unix user ID, e.g.:
$ id
1uid=1000(dm) gid=1000(dm) groups=1000(dm) 119(admin)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
$ /bin/su
Password:
# id
uid=0(root) gid=0(root) groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
# newrole -r system_r -t sysadm_t
Password:
# id -Z
unconfined_u:system_r:sysadm_t:s0-s0:c0.c255
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e Eachrole allows only certain types
- Can check with seinfo -x --role=name
¢ Types allow non-hierarchical security policies
- Each subject is assigned a domain, each object a type
- Policy stated in terms of what each domain can to do each type

* Example: Suppose you wish to enforce that each invoice
undergoes the following processing:

- Receipt of the invoice recorded by a clerk
- Receipt of of the merchandise verified by purchase officer
- Payment of invoice approved by supervisor

e Can encode state of invoice by its type
- Set transition rules to enforce all steps of process
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¢ Very complicated sets of rules

- E.g.,on Fedora, sesearch --all | wc -1shows 73Krules
- Rules based mostly on types

e Allowed/restricted transitions very important
- E.g., init can run initscripts, can run httpd
- Nowadays systemd needs to be able to transition to arbitrary types

- httpd program has special httpd_exec_t type, allows process to
have httpd_t type.

- Might label public_html directories so httpd can access them, but
not access rest of home directory

¢ Can also use levels to enforce MLS

- E.g., “:s0-s0:c0.c255” means process is at sensitivity so with no
categories, but has all categories in clearance.
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Policy construction

te-file checkal | mod-file —— semoduliy
| module package
if-file
fc-file
policy.29 cil-file «——— semodule «——— pp-file
cil-file
cil-file

e Very low quality tooling around policy construction
- Broken build systems, incompatible kernel policy formats, ...

* Hard to check /sys/fs/selinux/policy matches expectations
- No single-pass decompilation, tools seem to hang on real policies

- Even rebuilding from source is hard (e.g., actual compilation
happens during RPM install, using tons of spec macros)
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